

Document: Manual- Graphical Composition
Getting Started with Signal Composition

 Release date: 2024-01-12

 Document version: 1.0

 Author: FORCAM GmbH

Graphical Composition
Getting Started with Signal Composition

Version: 240112

Manual

Contents

Manual - Graphical Composition Page: 2/80

Contents

1 About this document .. 5

2 Graphical composition in EDGE CONNECT ... 6

3 Working with the graphical composition .. 8

3.1 The user interface .. 8

3.2 Blocks and function categories ... 8

3.2.1 Function categories .. 9

3.2.2 Structure and properties of the blocks ... 10

3.2.3 Shadow blocks .. 12

3.2.4 Optional blocks for extension ... 12

3.3 Working in the graphical editor .. 14

3.3.1 Reading direction of the blocks .. 14

3.3.2 Add and edit blocks .. 15

3.3.3 Notation of numbers .. 16

3.3.4 Error detection.. 16

4 Process variables (Variables) ...18

4.1 [Variable] - read variable .. 20

4.2 Set [Variable] to ... 21

5 Interpret signals (Signals) ...22

5.1 Set [Signal] to ... 23

5.2 [Signal] - Read signal value ... 24

5.3 Get base / scaled value for ... 25

6 Define events (Events) ...26

6.1 SendImpulse .. 26

6.2 SendQuantity ... 27

6.3 SendState... 28

6.4 SendSignalValue ... 29

6.5 SendSignalPackage ... 31

6.6 SendGenericInformation .. 33

6.7 SendState [Selection] ... 34

7 Make logical connections (Logical) ...36

7.1 if-do ... 36

Contents

Manual - Graphical Composition Page: 3/80

7.2 Mathematical comparison (=/≠/</>/≤/) ... 37

7.3 ‚And/or‘ (logical connective)... 38

7.4 equal/not equal (logical connective) ... 39

7.5 Rising/Falling edge (detect edges) .. 40

7.6 “not” statement (negation) .. 41

7.7 True/False .. 42

8 Repeaters ..44

8.1 Once per .. 44

9 Maths operations (Arithmetic) ..45

9.1 Number field .. 45

9.2 Mathematical operation ... 45

9.3 ToNumber .. 46

10 Log values (Logging) ...47

10.1 Debug out .. 47

11 Create and process texts (Text) ..48

11.1 String ... 48

11.2 Append String .. 48

11.3 ToString ... 49

11.4 Length .. 50

11.5 SplitString .. 51

11.6 FromAscii ... 52

11.7 Substring .. 53

12 Create and manage lists (Lists) ...54

12.1 ListNew .. 54

12.2 ListAdd ... 55

12.3 ListClear ... 56

12.4 ListDelete ... 57

12.5 [List] - Insert list ... 58

13 Managing times (Date and time) ..60

13.1 FormatTime ... 61

13.2 AtTime Do .. 62

13.3 Sleep .. 63

13.4 ConvertToTimeStamp ... 64

Contents

Manual - Graphical Composition Page: 4/80

13.5 CurrentSystemTimestamp .. 65

14 Additional actions (Misc) ...66

14.1 HttpPost .. 66

14.2 Get [specific] Data .. 67

14.3 GetMachineStatus .. 68

14.4 Offline .. 68

14.5 IpAddress ... 69

14.6 HostName .. 70

15 Process asset properties (Business Parameters)71

15.1 SetParameter ... 71

15.2 GetParameter .. 72

15.3 DeleteParameter .. 72

15.4 DeleteAllParameter .. 73

16 Glossary ...74

17 Annex ..75

17.1 Parameter overview ... 75

17.2 ASCII table ... 78

About this document

Manual - Graphical Composition Page: 5/80

1 About this document

This document describes how to use the graphical Composition editor, which you can use to easily
interpret asset signals.

 The graphical composition is part of FORCE EDGE CONNECT (hereafter simply referred to as
EDGE CONNECT), it can therefore only be used for signal interpretation within this application.

The manual explains the different functions, elements and possibilities of the graphical signal
interpretation based on the different topics (functional areas). Each function is explained with a
practical example.

 For better readability, we generally use the generic masculine in the text. These formulations,
however, are equally inclusive of all genders and intended to address all persons equally.

Target group

In this manual, we assume that you have knowledge in the following areas:

‒ Knowledge of machine connection and configuration with EDGE CONNECT
See the FORCE EDGE CONNECT manual for detailed information.

‒ Basic knowledge in signal processing / electronic data processing

If you do not have any knowledge in this area, take the time to familiarize yourself with the basics.

 We recommend that you use our Academy: https://forcam.com/academie/

The FORCAM Academy provides the knowledge to effectively use the methods for digital
transformation and the technologies for the Smart Factory.
Based on lean manufacturing and TPM methods, our institute team will guide you and provide
support to initiate changes in the company and to use the technologies correctly.

Additional information

Our Customer Area provides all manuals, product descriptions and further information about your
release.

https://forcam.com/academie/
https://forcam.com/customer-area/

Graphical composition in EDGE CONNECT

Manual - Graphical Composition Page: 6/80

2 Graphical composition in EDGE CONNECT

If you want to evaluate the signals that were read from an asset (machine, sensor, etc.), first these
signals must be interpreted.
Without any programming knowledge, you can use graphical composition to define quickly and
easily, which signals should be processed in which way. You can also define, when data is to be sent
to an MES, ERP or another third-party system. The graphical composition is thus part of the Signal
Composition, it can be used instead of the script editor during signal composition.

Figure 1: Positioning of the graphical composition in EDGE CONNECT

Graphical vs. script-based signal interpretation

In the Signal Composition component, meanings are assigned to signals. For example, a pure
numerical value (such as 0 or 1) is turned into a readable and understandable information, such as
“Production” or “Stoppage”.
A script is a short sequence of commands that are executed by the program. The graphical
composition provides a simple and beginner-friendly alternative to classical scripting, making signal
interpretation accessible to everyone. The graphical composition is used like a modular system.

Graphical composition in EDGE CONNECT

Manual - Graphical Composition Page: 7/80

Fig. 2: Script-based vs. graphical editor

‒ The individual commands are visualized in a graphical way with the help of colored puzzle
pieces.
Beginners in programming can thus execute basic commands without any prior knowledge of
a specific programming language.

‒ Application-supported error prevention right from the start.
The use of graphical elements excludes syntax errors.
 Different mechanisms make it easier to recognize other types of errors.

‒ The clear presentation of the categories and functions visualizes the complete range of
functions and facilitates the handling of the editor.

‒ The graphical composition can also be combined with an MR template.

ⓣ For general information on signal interpretation during asset configuration, refer to the FORCE
EDGE CONNECT manual.

Working with the graphical composition

Manual - Graphical Composition Page: 8/80

3 Working with the graphical composition

3.1 The user interface

The graphical composition is part of the Configuration Wizard. There, conditions for the
interpretation of the signals are defined in the Composition step.
The graphical editor is called from the GRAPHIC tab. The various programming blocks are shown as
graphical blocks here, which can be assembled in a modular fashion.

Fig. 3: Graphical editor

(1) Select blocks via their function categories
(2) Assemble blocks in the editing window ("Scripting")
(3) Center view
(4) Zoom in/out view

General information about the different types of blocks and categories can be found in the following
sections.

3.2 Blocks and function categories

Each "puzzle piece" in the graphical composition is a block and usually corresponds to a function or
action (function blocks). The blocks are composed in a modular way. Matching "building blocks" can
be combined with each other to form an overall structure that all required signal processing
commands.

Depending on their function, the blocks are grouped into function categories, e.g., all blocks for
creating and managing lists are contained in the Lists category).
In addition to the general function blocks, there are mandatory blocks that can be used to pass on
values (shadow blocks), and optional blocks that can transmit additional information.

Working with the graphical composition

Manual - Graphical Composition Page: 9/80

3.2.1 Function categories

The function blocks are grouped into different categories according to their functions/topics. Each
category has a color assigned. All blocks of a category have the same color. This way, it is easy to
distinguish the individual blocks.

When you select a category, the associated function blocks are displayed to the right of it (see “3.3 -
Working in the graphical editor”.

Figure 4: Function categories

The following table provides an overview of all available categories and their usage as well as links to
the corresponding chapters in this manual.

Working with the graphical composition

Manual - Graphical Composition Page: 10/80

Category Usage See chapter

Variables

Create and read variables, write values to variables.

(Variables serve as containers for storing data.)

4 “Process variables
(Variables)”

Signals

Read, distinguish and convert signal values.

(Signals contain and transmit information that is usually
measured by a sensor.)

5 “Interpret signals
(Signals)”

Events

Send data (impulses, production states or values) to
third-party systems

6 “Define events (Events)”

Logical
Establish correlations between values

This enables decisions about their logical value or status.

7 Make logical
connections (Logical)

Repeaters Perform actions in defined time intervals 8 Repeaters

Arithmetic

Perform arithmetic functions (add, subtract, multiply
values)

Convert data formats

9 Maths operations
(Arithmetic)

Logging Log and output specific values 10 Log values (Logging)

Text Create and process texts
11 Create and process
texts (Text)

Lists Create, fill, empty and delete lists
12 Create and manage
lists (Lists)

Date and
time

All actions related to time or date settings
13 Managing times (Date
and time)

Misc
Collection of additional commands and functions for
communication with other systems

13Managing times (Date
and time)

Business
Parameters

Read and process specific properties of the machine

(The corresponding data is provided in the Configuration
Wizard in the previous configuration steps.)

14 Additional actions
(Misc)

3.2.2 Structure and properties of the blocks

All types of blocks have basically the same structure. They differ in their color and the possibilities of
docking to other blocks, depending on their function.

Connection points

Each block has connection points to other blocks. As with a puzzle, only matching connections can be
combined.

Connection points have different functions, depending on the type of building block:

Working with the graphical composition

Manual - Graphical Composition Page: 11/80

Fig. 5: Connection points

(1) Connection of further blocks possible
(2) Passing on input data (from right to left)

⚠ A row must be completely closed on the right (no open connection points).

Input and output

Inputs are the contents that are required to run the program. The output is the result of processing
these inputs and/or the output of a command.

Chapter 17.1 “Parameter overview” provides on overview of all rules and restrictions for the inputs
and outputs of the different types of blocks.

Data type

Each block/variable has certain restrictions about the formats (data types) for input and output
values.

The following data types are possible, depending on the block/parameter:

Data type Description

Boolean

A boolean is a TRUE/FALSE value.

A boolean either indicates that an event is true (1) or false (0). It can also
indicate whether an event has actually occurred (true/1) or not (false/0).

String

String of numbers, letters or symbols.

This data type is used to represent texts.

Number Contains digits

Working with the graphical composition

Manual - Graphical Composition Page: 12/80

Predefined input values

Fig. 6: Drop-down menu

blocks have predefined input parameters. Clicking the small triangle on the right displays the options
that are available for block.

3.2.3 Shadow blocks

Shadow blocks serve as placeholders for inputs that are mandatory for a block to perform its
function/the desired action. A shadow block is always connected to a superordinate block if this
block is selected in the function category window.

Fig. 7: Shadow blocks

A shadow block has a lighter coloring, it indicates that this parameter of the block must not be
empty. You must then either enter a value manually (Fig. 7) or use another block to provide the
required input.

ⓣ A given shadow block can be replaced by another block with the same data type.

3.2.4 Optional blocks for extension

Some function blocks can be extended by additional blocks with optional parameters. These blocks
have a blue gear to make additional settings.

Working with the graphical composition

Manual - Graphical Composition Page: 13/80

Figure 8: Optional parameters on a block

Reference

This block can be used to transmit a freely selectable value, e.g., text.

Customer specific settings

Here you can insert the parameters created in the "Customer-specific settings" step of the
Configuration Wizard. Refer to the general manual for more information on these parameters.

 The optional blocks further down can only be added together with the blocks above (i.e., if the
blocks above have been inserted, too.) In the picture above, this means that the Customer
specific settings can only be used after inserting the Reference.

Working with the graphical composition

Manual - Graphical Composition Page: 14/80

3.3 Working in the graphical editor

Each composition starts and ends with the begin...end frame.

This block automatically appears in the editing area. You can determine the further sequence of the
blocks within the structure yourself, in accordance with of block characteristics. Each block can be
used on its own and fulfills a specific task.
To perform the associated action, a block may require additional information (input) from other
blocks that you must attach to the block. The result is a consistent structure of commands for signal
processing.

3.3.1 Reading direction of the blocks

The blocks are read from top to bottom and from left to right.

Example: Reading direction from top to bottom

Fig. 9Example of a top-to-bottom sequence

The begin...end block (1) is the overall frame of each composition. The other function blocks are
processed as indicated by the numbering.

Example: Reading direction from left to right

The individual rows are read and processed from left to right, as in a book:

Working with the graphical composition

Manual - Graphical Composition Page: 15/80

Fig. 10: Example of a left-to-right processing sequence

It starts with if (1), followed by the green temperature block (2), then the mathematical > symbol
(3), and it ends with the number 30 (4).

This row starts with do, after that the content of the dark blue block is also read from left to right.
This means that the reading sequence is not affected by the fact that this block consists of two lines.

3.3.2 Add and edit blocks

Add block

To add a block, select the desired category in the left pane and then drag and drop the block into the
editing area.
The currently selected block is always outlined in yellow.

Fig. 11: Select blocks via their function categories

Within the editing area, you can also use Drag and Drop to move the blocks to the desired position.

ⓣ Copying is also possible using the keyboard shortcuts Strg+C / Strg+V.

Working with the graphical composition

Manual - Graphical Composition Page: 16/80

Delete blocks

Blocks can be removed from the structure or the editing window by pressing the DEL key or by using
the context menu of the block (see below).

Further actions for a block

Right-clicking a block displays a list of possible actions for a block:

Fig. 12: Possible actions for a block

(1) Duplicate block
(2) Add comment
(3) External Inputs/Inline Inputs: Changes the display format
(4) Collapse block

To save space and keep the overall display clear , you can reduce the view for a block (and
also the subordinate blocks, if any).

(5) Delete block groups

3.3.3 Notation of numbers

The graphical Composition uses the English notation for numbers. Keep this in mind when using
periods and commas:

German In Words English

0,5 A half 0.5

1.000 One thousand 1,000

-1.750,000 Minus one million seven hundred fifty
thousand

-1,750,000

3.3.4 Error detection

An error in the structure is indicated in two ways:

Working with the graphical composition

Manual - Graphical Composition Page: 17/80

Block cannot be inserted

If a block does not fit into the structure in its function category or the data type used, it is not
possible to insert it at this position. A typical error would be, for example, that a string is required as
input format, but the block contains data of the Number data type.

Fig. 13: Error - invalid block

Block is incomplete

An inserted block remains red as long as required information (input) is still missing.
Once the input is complete (values or corresponding blocks inserted), the block returns to its original
color.

Fig. 14: Error - incomplete block

Only valid blocks are accepted.

⚠ By clicking on the exclamation mark, the cause of the error can be displayed and can thus be
quickly identified (see Fig. 13).

Process variables (Variables)

Manual - Graphical Composition Page: 18/80

4 Process variables (Variables)

Variables serve as containers for storing data. This can be static values (asset name, status, etc.) or
calculation results (temperature, pressure, time unit, etc.).

A variable can only store one specific type of content. For example, pure digits cannot be stored in a
text variable. The type of content is determined by the data type of the variable. These types have
each specific restrictions regarding their content (numerals, words., etc.) and their size (how
small/large, etc.). (For more information on data types, see “Structure and properties of the blocks”).

 If the content of a variable changes, this is registered throughout the system. All blocks that use
this variable automatically adopt the new value.

Handling variables

Variables must be created in the category first, and can then be used in the graphical editor.
Therefore, the category is initially empty.
If you click on the Variables functions category, the the available blocks are displayed and/or the
button for creating a new variable.

Fig. 15: Creating a new variable

The name and also the data type (number, string or boolean) must be defined for each variable.

 Created variables are only available in the configuration for which they were created, but within
the configuration they can be used unlimited times. The name of the variable must be unique
within the configuration.

For a better overview, the available variables are displayed according to their data type:

Process variables (Variables)

Manual - Graphical Composition Page: 19/80

Fig. 16: Overview of variable types

Variables can be renamed. To do so, left-click the variable. Select Rename in the drop-down menu.

Fig. 17: Renaming a variable

The drop-down menu also provides the Delete option to delete the variable.

⚠ Each deleted variable is removed completely from the structure and also from the function
category. This may result in an invalid structure.

Process variables (Variables)

Manual - Graphical Composition Page: 20/80

Fig. 18: Deleting a variable

4.1 [Variable] - read variable

Usage

This block is required if you want to use a variable in the structure. For each block, all created
variables of type String, Number and Boolean can be selected via the drop-down menu.

Input/Output

Allowed input types Output

No restrictions Corresponds to the type of the created variable

Example

In this case, once per second the number of seconds shall be increased by 1. To do so, the already
created second is used. Once the second variable gets the value 30, an impulse is sent and second is
reset to 0.

Fig.19: Example for [Variable]

Process variables (Variables)

Manual - Graphical Composition Page: 21/80

4.2 Set [Variable] to

Usage

Set [Variable] to is a connector. The block is used to assign a value to a variable. Depending on
the type of variable, this might be a string, a number or a boolean value. The variable to be used is
selected via the drop-down menu.

Data type

Allowed input types Output

Corresponds to the type of the created variable Corresponds to the type of the created variable

Example

Fig.20: Example for set [Variable] to

Once per second the number of seconds shall be increased by 1. To implement this requirement, the
set second to block defines that the second variable is to be recalculated. Once the second
variable gets the value 30, an impulse is sent. At the end, the number of seconds is again reset to 0.

Interpret signals (Signals)

Manual - Graphical Composition Page: 22/80

5 Interpret signals (Signals)

In most cases, signals are detected at the assets using sensors, they transfer the information to
EDGE CONNECT. In the production environment, typical signals are intervals, temperatures, machine
states and pressures.

Handling signals

Unlike variables, the signals used come from the assets themselves. Signals can be configured in step
5 and used later in the script.

Fig. 21: Adding a new signal

Interpret signals (Signals)

Manual - Graphical Composition Page: 23/80

5.1 Set [Signal] to

Usage

Set [Signal] to is a connector. The block is used to assign a number, string or boolean value to a
signal. The signal to be used is selected via the drop-down menu.

Data type

Allowed input types Output

No restrictions No restrictions

Example

Fig.22: Example for Set [signal] to

At first, Switch1is set to True (value 1). Once per second a repeater is processed. If Switch1is
switched, the production status is sent to Production. If not, status Stoppage is output.

Interpret signals (Signals)

Manual - Graphical Composition Page: 24/80

5.2 [Signal] - Read signal value

Usage

This block is required if you want to use signals in the structure. It reads the signal value. The signal
to be used is selected via the drop-down menu.

Data type

Allowed input types Output

No restrictions No restrictions

Example

Fig. 23: Example for [Signal]

If Switch1 switches to True (value =1), a repeater is called once per second. The repeater checks
whether Switch1 was switched. If yes, the production state is set to Production. If not, status
Stoppage is output.

Interpret signals (Signals)

Manual - Graphical Composition Page: 25/80

5.3 Get base / scaled value for

Usage

The Get base value block converts a signal value into another unit and outputs this value.
The Get scaled Value block outputs the value that is calculated from scaling and offset.

In step 5 of the Configuration Wizard, numerical signals were entered together with the assigned
unit, scaling factor and scaling offset.

The base value indicates that value in the defined SI base unit.
Scaling factor and scaling offset are defined during signal configuration.
With a defined scaling factor and offset of 0, for example, 0 °C is output as 273,15 °Kelvin.
The scaled value is the input value multiplied by the scaled factor and the scaled offset.

Data type

Allowed input types Output

No restrictions No restrictions

Example

Fig. 24: Example for Get base value for

In this example, the temperature value is converted to a different measurement unit and passed on
to a third-party system. Temperature is the Signal name, which is entered in a text block. The
corresponding value is added to the message by the Get base value for Temperature block. This
value must be converted as the SendSignalValue event only accepts strings as input values. See the
following chapters for details.

Define events (Events)

Manual - Graphical Composition Page: 26/80

6 Define events (Events)

Events send information packages to third-party systems. The content of these packages (impulses,
production states or values) is defined in the graphical composition.

6.1 SendImpulse

Usage

The SendImpulse block is used whenever a specific impulse is to be sent. The Impulse Count value
defines number of impulses to be sent. Additional blocks (Reference and Customer specific
settings) can optionally be included.

Input/Output

Only numbers can be used as input for Impulse count.
All other input entries must be strings. There are no restrictions to the output.

Define events (Events)

Manual - Graphical Composition Page: 27/80

Example

Fig. 25: Example for SendImpulse

In this case, once per second the number of seconds shall be increased by 1. Once the number of
seconds reaches 30, the SendImpuls triggers a message, and the second variable is set to 0.

6.2 SendQuantity

Usage

The SendQuantity block sends a defined quantity to third-party systems. The required quantity
entered as number for Quantity. Optionally, Unit, Quality details, Reference and Customer
specific settings can be included in the message.
Units must first be defined as variables.

Define events (Events)

Manual - Graphical Composition Page: 28/80

Input/Output

Only numbers can be used as input for Quantity.
All other input entries must be strings.

Example

Fig. 26: Example for SendQuantity

The SendQuantity block shall send a message whenever a light barrier is activated. The message
contains the information, that a quantity of 1 with the unit "pieces” has been produced, and that
this quantity has been qualified (quality details) as yield.

6.3 SendState

Usage

The SendState block sends the asset status as defined in the State field. The status values can be
freely defined here.
Optionally, the list of Status codes, a Reference and Customer specific settings can be
included in the message. The input comes from the entries in the Configuration Wizard (see Optional
blocks for extension).

 In order to send Status codes, a list muss be created.
Refer to chapter 12 on list administration for more information.

Define events (Events)

Manual - Graphical Composition Page: 29/80

Input/Output

Only strings are possible as input values. There are no restrictions to the output.

Example

Fig. 27: Example for SendState

In this example, one of two statuses is transmitted. If the machine is switched on (MachineOn) and
working in (Automatic) mode, the SendState blocks outputs the status Production. If not, the
Stoppage status is output.

6.4 SendSignalValue

Define events (Events)

Manual - Graphical Composition Page: 30/80

Usage

The SendSignalValue block is used to send signal values.
The Signal name takes the name of the signal.
The corresponding value is entered in the Value field, the Unit contains the signal unit.
If one of the optional blocks further down is to be used, all other blocks above must be inserted first.
However, these blocks can remain empty, if not required.

Input/Output

Only strings are possible as input values. There are no restrictions to the output.

Example

Fig. 28: Example for SendSignalValue

In this example, a warning message shall be sent whenever the temperature gets too high.
A signal value is sent if the temperature signal exceeds the value 100.
The transmitted signal contains the signal name (Temp), the value (100), the unit of the value (°C) and
the time when the limit was exceeded CurrentSystemTimestamp). Information for Reference or
Customer specific settings is optional, these may remain empty.

Define events (Events)

Manual - Graphical Composition Page: 31/80

6.5 SendSignalPackage

Usage

SendSignalPackage sends lists of signals. The contents originate from previously created lists (see
Create and manage lists (Lists)).
The list of names may be extended by additional signals and matching signal values.

 Observe sequence:
The first entry in the list of signals must correspond to the first entry in the list of values.

Input/Output

Only strings are possible as input values. There are no restrictions to the output.

Define events (Events)

Manual - Graphical Composition Page: 32/80

Example

Fig. 29: Example for SendSignalPackage

First, two new lists were created: one list of names (NameList) and one list of values (ValueList).
In a Once per hour repeater, the signal called test is added to the NameList. The corresponding
value (test) is written into the ValueList.
In this example, the SendSignalPackage block sends the lists once per hour.
After that, the lists are emptied.

Define events (Events)

Manual - Graphical Composition Page: 33/80

6.6 SendGenericInformation

Usage

The SendGenericInformation block sends an event with the current machine (asset) information.
The entries Parameter name and Parameter value
Additional Reference and Customer specific settings) can optionally be included.

Input/Output

Only strings are possible as input values. There are no restrictions to the output.

Example

Fig. 30: Example for SendSignalValue

If the camera sensor is activated, the Malfunction status is set to True (1). This indicates a
malfunction.
The SendGenericInformation block sends the error message of the punch as wear.

Define events (Events)

Manual - Graphical Composition Page: 34/80

6.7 SendState [Selection]

Usage

The SendState[Selection] block sends an asset status. There are two options: Production and
Stoppage. Optionally, the list of Status codes, a Reference and Customer specific settings
can be included in the message. The corresponding content has been defined in step 3 of the
Configuration Wizard.

 In order to send Status codes, a list muss be created.
Refer to chapter 12 for more information.

Input/Output

Input entries for SendState [Selection] must be strings. There are no restrictions to the output.

Define events (Events)

Manual - Graphical Composition Page: 35/80

Example

Fig. 31: Example for SendState [Selection]

At first, the Switch1 signals is set from False (0) to True (1).
The the repeater starts. If Switch1 is switched, the production status Production is sent. If not, the
Stoppage status is output.

Make logical connections (Logical)

Manual - Graphical Composition Page: 36/80

7 Make logical connections (Logical)

7.1 if-do

Usage

This block implements the if-do logic.
If represents a condition that must be fulfilled in order to process the subsequent command (do). If
a condition is not fulfilled, else can be used to trigger a different command.
The else if block is optional. The command is processed whenever the related condition is
regarded as True(1). The dark blue settings icon can be used to select additional parameters.

Input/Output

The input type for if, else if and else is boolean.
There are no restrictions to the input for do.
There are no restrictions to the output.

Example

Fig. 32: Example for the If-do-Block

In this example, the machine status is requested once per second.

Make logical connections (Logical)

Manual - Graphical Composition Page: 37/80

If the machine status is not Production the message Something is wrong shall be output. If it is,
the message shall be All is well.

7.2 Mathematical comparison (=/≠/</>/≤/)

Usage

Logical connectives like “=” link two variables of the Number data type.
The output is always a boolean value, i.e., True (1) or False (0).
The mathematical symbol can be replaced by other symbols.

The following tables contains their meanings:

V1 = V2 V1 equals V2

V1 ≠ V2 V1 unequal to V2

V1 > V2 V1 is greater than V2

V1 ≥ V2 V1 is greater than or
equal to V2

V1 < V2 V1 is less than V2

V1 ≤ V2 V1 is less than or
equal to V2

Input/Output

Only numerical values (type Number) can be used as input. Output are Boolean values only.

Make logical connections (Logical)

Manual - Graphical Composition Page: 38/80

Example

Fig. 33: Example for the = connective

In this example, 30 seconds shall be counted down. After that, the value is reset to 0.
Once per second, the second variable is increased by 1.
A check is performed each second to detect how many seconds have already passed. If the number
of seconds equals (=) 30 an impulse is sent. This impulse resets the counter to the original value 0.

7.3 ‚And/or‘ (logical connective)

Usage

The and connective is a basic connective (operator). If the states or statements before or after it
apply, the result is True(1). The sequence of input states is not fixed. The output is always a boolean
value, i.e., True (1) or False (0).
In the drop-down menu, the or connective can be selected. For this operator, only one of the
statements must apply in order to regard the result as True (1).

Input/Output

Input and output values can only be boolean values.

Make logical connections (Logical)

Manual - Graphical Composition Page: 39/80

Example

Fig. 34: Example for the “and” connective

In this example, the SendState block sends the status Production only if the machine is switched on
(MachineOn) and (and connective) is running in automatic mode (Automatic).
If only one of the two prerequisites applies, status Stoppage is sent.

7.4 equal/not equal (logical connective)

Usage

Equal is a basic connective (operator). If two states or statements are equal, the result (output) is
True(1).
The sequence of input states is not fixed. The input is a string value, the output is boolean, i.e.,.True
(1) or False (0).
In the drop-down menu, the opposite (not equal) can be selected.
The difference between the connectives „=“ and equal is that equal is used to compare string
values.

Input/Output

Only strings are possible as input values. The output can only be boolean values.

Make logical connections (Logical)

Manual - Graphical Composition Page: 40/80

Example

Fig. 35: Example for “not equal”

In this example, the machine status is requested once per second.
If the machine status does not match the Production status (not equal), the message Something
is wrong shall be output. If it is, the message shall be All is well.

7.5 Rising/Falling edge (detect edges)

Usage

This block indicates that a variable or signal has changed from true (1) to false (O) or vice versa.

Rising edge: At the beginning, the boolean value is false (0). Rising edge no checks whether the
value is now true (1). This would mean, that the value has changed from 0 to 1. In this case, the
corresponding command is processed.

Falling edge: At the beginning, the boolean value is true (1). Falling edge no checks whether the
value is now false (0). This would mean that the value has changed from 1 to 0. In this case, the
corresponding command is processed.

Input/Output

Input and output values can only be boolean values.

Make logical connections (Logical)

Manual - Graphical Composition Page: 41/80

Example

Fig. 36: Example for rising edge

In this example, an OutputSensor is used. Each time a piece is produced, the sensor triggers a signal
change. This means, the boolean value of the signal changes from false (0) to true (1). Consequently,
the Rising edge block is true (1). This triggers the subsequent command and the SendQuantity
block reports one produced piece.

7.6 “not” statement (negation)

Usage

The result of a not statement is true if the input value is false.
This means that the original state is the opposite of the output state.

Input/Output

Input and output values can only be boolean values.

Make logical connections (Logical)

Manual - Graphical Composition Page: 42/80

Example

Fig. 37: Example for a “not” statement

In this case, once a minute a check is performed to detect whether the machine is running for the
first time.
The asset is considered running if the program is not processed (not initialized) and the asset is
not offline (not offline). Therefore, lists are created with current and previous reasons for a status.
The creation of the lists triggers the execution of the program (initialized). This switches the
variable to True (1).
After that, the list of status reasons is deleted.

7.7 True/False

Usage

This block is placed at the end and used to define whether the result is True (1) or False (0). To do
so, True or False can be selected from the drop-down menu.

Input/Output

There are no restrictions to the input. The output can only be boolean values.

Make logical connections (Logical)

Manual - Graphical Composition Page: 43/80

Example

Fig. 38: Example for “true”

At first, Switch1 is activated, which triggers the signal and therefore changes to True (1). After that,
a repeater is called once per second to check whether Switch1 was switched. If yes, the production
status is set to Production. If not, status Stoppage is output.

Repeaters

Manual - Graphical Composition Page: 44/80

8 Repeaters

In many cases, actions are repeated in regular intervals. Repeaters trigger actions in defined
intervals.

8.1 Once per

Usage

Repeaters are used to repeat an action at regular intervals. The required interval can be select in the
drop-down menu.
Once per

second
minute
hour
day

Example

Fig. 39: Example for once per

In this example, 30 seconds shall be counted down. After that, the value shall be reset to 0.
Once per second, the second variable is increased by 1. A check is performed each second (Once per
second) to detect how many seconds have already passed. If the number of seconds equals (=) 30 an
impulse is sent. The impulse resets the counter for the second variable to the original value 0.

Maths operations (Arithmetic)

Manual - Graphical Composition Page: 45/80

9 Maths operations (Arithmetic)

These blocks implement calculation functions such as adding, subtracting or multiplying values, and
they convert data formats.

9.1 Number field

Usage

In this block, a numerical value is inserted to connect it to a task.
Input and output values can only be numbers.

9.2 Mathematical operation

Usage

The block can be used for various math operations like addition, subtraction, multiplication, division,
exponentiation or calculating the sine value. Besides numbers, variables can also be included for
calculation.

Input/Output

Input and output values can only be numbers.

Example

Fig. 40: Example for maths operations

Maths operations (Arithmetic)

Manual - Graphical Composition Page: 46/80

A nested calculation indicates the factor. For understanding the calculation method it is important to
follow the“ from inside out” calculation rule. This principle is used to place the parenthesis and
defines the calculation order.
In this example, three is added to the second variable first (1). The result is used as denominator of
the fraction(2). This result is then used as exponent to two in the last math operation (3).

9.3 ToNumber

Usage

The ToNumberblock changes the data type from string to a numerical value (number). The string to
be converted must consist of numbers only.

Input/Output

The input must be a numerical value of data type string. The output can only be numbers.

Example

Fig. 41: Example for ToNumber

The SendQuantity block shall report a quantity. However, the input is a string value in our case.
Although it only consists of numbers, the string is not a valid input data type for the SendQuanity
block. Therefore, the ToNumber block is used to convert the string data type into a number. Only this
way the SendQuantity can be processed.

Log values (Logging)

Manual - Graphical Composition Page: 47/80

10 Log values (Logging)

The blocks in this category can be used to log specific values and make them available for analysis.
Different warning levels are applied for this.

10.1 Debug out

Usage

Raw signals and variables are logged to get the desired values.
Different types of log entries can be selected.

Debug out: Information that can be helpful during issue diagnosis
Info: General log for all types of activities
Warn: Issues or malfunctions that do not prevent processing
Error: Issue that stops/prevents several functions

Input/Output

Only strings are possible as input values. There are no restrictions to the output.

Example

Fig. 42: Example for Debug out

In this example, the Debug out block is used to write the string Machine running to the log file once
per minute.

Create and process texts (Text)

Manual - Graphical Composition Page: 48/80

11 Create and process texts (Text)

The graphical/modular composition also needs words and sentences to make the values
understandable. This category can be used to create texts and use additional processing functions.

In graphical composition, text is regarded as a string. As with a string, text can consist of letters,
numbers and characters.

11.1 String

Usage

Using these blocks, strings can be added by typing them in the quotes.

Input/Output

There are no restrictions to the input. The output can only be string values.

Example

Fig. 43: Example for String

The set IDNumber to block defines the ID number of an asset with the string “123456789”. After
that, the if-do block checks whether the Id number has more than 8 characters. If yes, a message is
written to the log file. This message is entered in the string. In this case the message is “Number too
long”.

11.2 Append String

Create and process texts (Text)

Manual - Graphical Composition Page: 49/80

Usage

As an extension to the simple string, Append String puts several strings together. Strings are added
or deleted by clicking the plus or the minus sign.

Input/Output

Input and output values can only be strings.

Example

Fig. 44: Example for Append String

This example is about logging the ID number and the switch status. The set log to block makes it
more readable. The Append string block is read from top to bottom. Therefore, first the text "ID
number" is displayed, then the value of the variable IDNumber is added. Then the text “, Schalter:” is
displayed and the signal of the switch Switch1 is added. At the end, the entire string is written to the
log file.

11.3 ToString

Usage

ToString is used to convert numbers, or variables representing numbers, into a string.

Input/Output

There are no restrictions to the input. The output can only be string values.

Create and process texts (Text)

Manual - Graphical Composition Page: 50/80

Example

Fig. 45: Example for ToString

The goal is to output the number of minutes. Once per minute the variable minutes is increased by
one. The Debug out block is then used to write the new value to the log file. However, Debug out
can only have strings as input values. Therefore, ToString converts the minutes variable into a text.

11.4 Length

Usage

Length counts the number of characters in a string. The desired string is entered in the quotation
marks. It is also possible to attach a variable. The counted number of string characters is output as
the result. The result is a number. Counting starts with 1.

Input/Output

Only strings are possible as input values. The output can only be numbers.

Example

Fig. 46: Example for Length

As an example, the length of the order number is to be counted to make sure it does not exceed a
defined threshold of eight characters.
If the IDNummer is more than 8 characters long (Length > 8), the Debug outblock should write the
message “Number too long” to the log file.

Create and process texts (Text)

Manual - Graphical Composition Page: 51/80

11.5 SplitString

Usage

In the SplitString block, a value from a self-defined selection of categories can be output. Input
string is used to define the different categories.
They are separated by a predefined character. This character is defined under Separator, typically a
comma or an underscore is used as separator.
The index indicates which of the Input string entries is to be selected. Only one value can be
output. The Input strings are counted from left to right. Counting starts with 0.

Input/Output

Only strings can be used as input and output for Input string and Separator.
For Index, input and output values can only be numbers.

Example

Fig. 47: Example for SplitString

In this example, the machine name should be output. It starts with the text “Hello from machine:”.
The possible categories are listed under Input string and are separated by commas (Separator).
The Index is specified with 0. Therefore, MachineName is output. If the index were “2”, the type
(“Type”) would be output.

Create and process texts (Text)

Manual - Graphical Composition Page: 52/80

11.6 FromAscii

Usage

The FromAscii block refers to a specified table of values with instructions and characters. The block
accesses a value from this table. The number indicates which value of the ASCII table is to be
selected.

Input/Output

Only numbers can be used as input. The output can only be string values.

 i The ASCII table can be found in chapter 17.2 ASCII table, page 78.

Example

Fig. 48: Example for FromAscii

In this example, the text "Hello from machine:" shall be output followed by a paragraph mark and the
text "Forcam".
The Append String block lists strings one after another. After the first text string "Hello from
machine:" is inserted, the block FromAscii reads and processes the tenth command from the ASCII
table. This is LF for line feed (new line). Then a second FromAscii block fetches command 13 from
the ASCII table. This is CR, i.e., carriage return (same as pressing the Enter key). This places the cursor
at the beginning of a line.
The result looks like this:

Hello from machine:
Forcam

Create and process texts (Text)

Manual - Graphical Composition Page: 53/80

11.7 Substring

Usage

The substring block outputs only a part of a string. The entire string entered under Input string.
Start index and End index are entered below as numbers. As typical for index handling,
characters are counted starting from 0. The End Index is excluded.

Input/Output

Input and output for Input string are strings.
Only numbers are possible as input for Start index and End index. The output can only be string
values.

Example

Fig. 49: Example for Substring

In this example, the location of the machine shall be output.
The Append String block first sets the text "Hello from machine:". Input string provides a list of
asset properties. Start index specifies that the output starts at character 12. End index indicates
that the output ends and includes character 19.
Because counting starts with 0 from the left, the Location property is output.

Create and manage lists (Lists)

Manual - Graphical Composition Page: 54/80

12 Create and manage lists (Lists)

Usually, a list is used to collect different production states. The blocks of this category create, fill,
empty and delete lists.

 A list must be created first.
Only then more blocks are available for use with the list.

⚠ Always empty a list after using it (see function ListClear).

12.1 ListNew

Usage

The ListNew block creates a new list. The name of the list can be entered in the first field. The type
of list input (string, number or boolean values) is selected from the drop-down menu.

Input/Output

Restrictions for the input are made via the selection.

Create and manage lists (Lists)

Manual - Graphical Composition Page: 55/80

Example

Fig. 50: Example for ListNew

First, the ListNew blocks create two new lists, a list of names and a list of values. The exclamation
marks remind you to empty or delete the list at the end. A repeater adds the signal name test to the
NameList list. The corresponding value is inserted in the ValueList.
Then the SendSignalPackage block sends both lists. The ListClear blocks clear the contents of the
assigned list.

12.2 ListAdd

Usage

The ListAdd block adds values to a list. As a prerequisite, the list must already have been created
using the ListNew block. The desired list is selected via the drop-down menu.

Input/Output

The input for the block is always a previously created list. This list is selected from the drop-down
menu. There are no restrictions to the output.

Create and manage lists (Lists)

Manual - Graphical Composition Page: 56/80

Example

Fig. 51: Example for ListAdd

First, two new lists are created: one list of names and one list of values. One of the ListAdd blocks
adds the signal name test to the NameList once per hour; the other block inserts the corresponding
value into the ValueList. Then the SendSignalPackage block sends both lists. The ListClear
blocks clear the contents of the assigned list.

12.3 ListClear

Usage

ListClear deletes the contents of a list.

 It is important to run the ListClear command regularly after creating a new list to keep free
memory.

⚠ ListClear deletes only the contents of a list.
ListDelete completely deletes a previously created list.

Create and manage lists (Lists)

Manual - Graphical Composition Page: 57/80

Input/Output

The input for the block is always a previously created list. This list is selected from the drop-down
menu. There are no restrictions to the output.

Example

Fig. 52: Example for ListClear

First, two new lists are created: one list of names and one list of values. One of the ListAdd blocks
adds the signal name test to the NameList once per hour; the other block inserts the corresponding
value into the ValueList. Then the SendSignalPackage block sends both lists. The ListClear
blocks clear the contents of the assigned list.

12.4 ListDelete

Usage

The ListDelete block deletes an existing list. The drop-down menu is used to select the list to be
deleted.

⚠ ListDelete completely deletes a previously created list.
ListClear deletes only the contents of a list.

Create and manage lists (Lists)

Manual - Graphical Composition Page: 58/80

Input/Output

The input for the block is always a previously created list. This list is selected from the drop-down
menu. There are no restrictions to the output.

Example

Fig. 53: Example for ListDelete

In this case, once a minute a check is performed to detect whether the machine is running for the
first time.
The asset is considered running if the program is not processed (not initialized) and the asset is
not offline (not offline). Therefore, lists are created with current and previous reasons for a status.
The creation of the lists triggers the execution of the program (initialized). This switches the
variable to True (1).
The list with status reasons is deleted by the ListDelete block.

12.5 [List] - Insert list

Usage

The block inserts a list into the structure. The (already created) list is selected in the drop-down menu.

Create and manage lists (Lists)

Manual - Graphical Composition Page: 59/80

Input/Output

The input for the block is always a previously created list. This list is selected from the drop-down
menu. There are no restrictions to the output.

Example

Fig. 54: Example for [List]

In this example, two lists of temperature values shall be created, filled with values, sent and, at the
end, emptied again.
After the lists are created and the temperature values inserted once an hour, they are sent with using
the SendSignalPackage block. The signal name and the corresponding signal values are taken from
the name list and the value list.

Managing times (Date and time)

Manual - Graphical Composition Page: 60/80

13 Managing times (Date and time)

Date and time must be defined in order to trigger an action at a specific point in time. The current
time of an event and pauses are also stored.

This function category contains all actions related to time or date settings. UTC time is used
throughout the category.

The following table lists the abbreviations used in the graphical composition for the various time
units.

Letter Date or time Example

G Calendar system era AD

Y Year 2018 (yyy), 18 (yy)

M Month of the year
July (MMMM), Jul (MMM), 07
(MM)

w Week of the year 16

W Week of a month 3

D Day in a year 266

d Day in a month 4

F Week in a month 4

E Day of the week Tuesday, Tue

u
Number of the weekday, where 1
stands for Monday, 2 for
Tuesday, etc

2

a AM or PM AM

h
Hour of the day with am/pm
(1-12)

12

H Hour of the day (0-23) 12

k Hour of the day (1-24) 23

K
Hour of the day with am/pm
(0-11)

2

m Minute per hour 59

s Second per minute 35

S Millisecond per minute 978

Managing times (Date and time)

Manual - Graphical Composition Page: 61/80

z Time zone GMT-08:00

Z
Time zone offset in hours (RFC
pattern)

-0800

X Time zone offset in ISO format -08;-08:00

E, dd MMM yyyy
HH:mm:ss

Example Tue, 02 Jan 2023 11:22:35

13.1 FormatTime

Usage

The FormatTime block creates the desired time unit of the current time/a date based on the current
time stamp.
The format specifies the unit of the Offset, e.g., dd.MM.yyyy or MM.dd.yyyy.
The current time is indicated as an Offset of 0 (zero).
The Offset unit determines the counting unit. Possible counting units are milliseconds, seconds,
minutes, hours, days, months or years. For example, the result of an Offset of 10 and milliseconds
(ms) as the unit would be the current time plus 10 milliseconds.

ⓣ Abs is used to convert Unix time stamps (e.g., time stamps that are received directly from the
asset). In this case, the reference time (offset = 0) for conversion is not the current time but
January 1st, 1970, 00:00 o’clock. If Abs is selected, the offset value is therefore the time
difference (in ms) to this (reference) date. This value is converted to the desired format.

Managing times (Date and time)

Manual - Graphical Composition Page: 62/80

Input/Output

The input for Format is a string value. The output can only be string values.
The input for Offset is a number. The output can only be string values.
The input for Offset unit is a drop-down menu. The output can only be string values.

Example

Fig. 55: Graphical example for FormatTime

In this example, a time stamp shall be to be recorded for each stoppage.
If the status is one (1), the SendState block shall send the status Stoppage. At the same time, the
following string shall be written to the timestamp variable: First the date in the order
day.month.year, then the text string T for time, then the time in the order hour:minute:second.

13.2 AtTime Do

Usage

The AtTime Do block executes a specific action at a defined time.
The time is specified in the following format: HH : mm: ss. The number range of the hours is from 0
to 23, that of minutes and seconds from 0 to 59.

Input/Output

Only numbers can be used as input.

Managing times (Date and time)

Manual - Graphical Composition Page: 63/80

Example

Fig. 56: Example for AtTime Do

This example shows, a status shall always be sent at exactly the same time. To do so, the ListNew
block is used to create a StatusCode list. This list contains strings. In the AtTime Do block, the time
22:0:0 is defined. At this time, the SendState action will be executed.
The list is then cleared again.

13.3 Sleep

Usage

The Sleep block waits for a certain period of time. The numeric value indicates the period of time (in
milliseconds) for which there shall be no action performed. After that, the next block is executed.
This is especially helpful for actions that take longer to execute. This way it will not be “overtaken” by
subsequent tasks.

Input/Output

Only numbers can be used as input. There are no restrictions to the output.

Managing times (Date and time)

Manual - Graphical Composition Page: 64/80

Example

Fig. 57: Example for Sleep0

In this example, Sleep is used as a time buffer. Without a rest period of 20 millisecond, sending a
pulse (SendImpulse) would be faster than calling the endpoint on a server. This would trigger an
error.

13.4 ConvertToTimeStamp

Usage

The ConvertToTimeStamp block outputs a time stamp. Date contains the date to be converted, the
Format string below defines the format of this date. The output is a UNIX value, i.e., the time in
milliseconds after 01/01/1970 at 0:00.

Input/Output

Input and output values can only be strings.

Example

Fig. 58: Example for ConvertToTimeStamp

Managing times (Date and time)

Manual - Graphical Composition Page: 65/80

In this example, two different points in time shall be compared.
If the difference between the received time stamp (ConvertToTimeStamp) and the current time
(CurrentSystemTimestamp) is more than 60,000 ms (i.e., one hour), a message is sent using the
block. This message contains the information that the received time stamp is outdated.

13.5 CurrentSystemTimestamp

Usage

The CurrentSystemTimestamp block always enters the current Unix time. It indicates how many
seconds have passed since 01.01.1970.

Input/Output

There are no restrictions to the input. The output can only be string values.

Example

Fig. 59: Example for CurrentSystemTimestamp

In this example, two different points in time shall be compared.
If the difference between the received time stamp (ConvertToTimeStamp) and the current time
(CurrentSystemTimestamp) is more than 60,000 ms (i.e., one hour), a message is sent using the
SendGenericInformation block. This message contains the information that the received time
stamp is outdated.

Additional actions (Misc)

Manual - Graphical Composition Page: 66/80

14 Additional actions (Misc)

This category is a collection of additional commands and blocks that create the connection to other
systems. The related functions include, for example, integrating data from the Internet, retrieving the
asset status, defining an asset as offline or outputting the IP address and host name.

14.1 HttpPost

Usage

Block HttpPost block sends a message to a third-party system. The Internet address (destination) is
entered in Url. The payload refers to the actual data to be transmitted with the message.
We recommend to use the notation with two primes (superscript quotation marks, e.g., “k”).

Input/Output

Inputs are strings. There are no restrictions to the output.

Example

Fig. 60: Example for HttpPost

In this example, a server communication endpoint shall be called. The url and payload to be used
fort the call are entered.
The program then waits for 20 ms (sleep block). This provides the time to call the page. Then the
SendImpulse block sends the value 1.

Additional actions (Misc)

Manual - Graphical Composition Page: 67/80

14.2 Get [specific] Data

Usage

The Get [specific] Data block outputs specific information. Predefined data includes
Description, Manufacturer, Model Number, Serial Number, Inventory Number and Location.
In the Configuration Wizard, parameters have already been determined in step 2 and step 3.
These parameters are automatically added to the drop-down menu.

Input/Output

The input is selected from the drop-down menu. The output can only be string values.

Example

Fig. 61: Example for Get [specific] Data

If the temperature is higher than 50°C, the SendSignalValue block transmits “ Temperature” as the
signal name together with the related temperature value (Value).
An entry is then made in the log file. The entry contains the number of the asset (Get [Model
Number] Data), the text "'s temperature is" and the current value of the “temperature” variable.

Additional actions (Misc)

Manual - Graphical Composition Page: 68/80

14.3 GetMachineStatus

Usage

GetMachineStatus outputs the current machine status.

Input/Output

There are no restrictions to the input. The output can only be string values.

Example

Fig. 62: Example for GetMachineStatus

In the example, GetMachineStatus is used to query the machine status. If this is not equal to the
status Production,the entry Something is wrong is written to the log file via (Debug out). If not,
the message All is well is written to the log.

14.4 Offline

Usage

If a system or machine is not in operation, the status query Offline can be used.

Input/Output

There are no restrictions to the input. The output can only be boolean values.

Additional actions (Misc)

Manual - Graphical Composition Page: 69/80

Example

Fig. 63: Example for Offline

In the example, the program checks once per minute for the following status:

‒ The program has not just been initialized ((not initialized)
and

‒ the asset is not offline (not Offline)

If this status applies, the asset is running. In this case, lists are created with the current and with
previous reasons for a status. Afterwards, True is used to confirm that the program has just been
started (initialized). This prevents the program from processing the upper part of the list again.
The ListDelete block then deletes the list of status codes.

14.5 IpAddress

Usage

The IPAdress block outputs the IP address of an asset. The IP address is an individual address that
identifies a device on the Internet or within a local network.

Input/Output

There are no restrictions to the input. The output can only be string values.

Additional actions (Misc)

Manual - Graphical Composition Page: 70/80

Example

Fig. 64: Example for IpAddress

If the temperature is greater than 30, the SendState block sends the asset status Stoppage. In
addition, the IP address (IPAdress) is written to the log file.

14.6 HostName

Usage

HostName enters the name of the host of an asset.
A host is a computer and the operating system running on it, that is part of a network and makes its
services available to other network stations.

Input/Output

There are no restrictions to the input. The output can only be string values.

Example

Fig. 65: Example for HostName

In this example, a new list (ListNew) is created. All HostName values are added to this list using the
ListAdd block. At 12 o'clock, this list is written to the log file and the list is emptied afterwards.

Process asset properties (Business Parameters)

Manual - Graphical Composition Page: 71/80

15 Process asset properties (Business Parameters)

Business parameters are characteristics of a machine, such as a description, the manufacturer, model
or serial number, or the machine’s location. The corresponding data is provided in the Configuration
Wizard in the previous configuration steps. (See the EDGE CONNECT manual.)

15.1 SetParameter

Usage

The SetParameter block specifies a new parameter and assigns a value to it. Name and the value of
this parameter are entered in a string.
Parameters have also been defined in step 2 and 3 of the Configuration Wizard already. (See the
EDGE CONNECT manual.)
If an already defined parameter is to be used, the GetParameter block (chapter 15.2) is used.

Input/Output

Only strings are possible as input values. There are no restrictions to the output.

Example

Fig. 66: Example for SetParameter

In this example, once a second a check is performed to determine whether the interval equals 100. If
this is the case, an impulse is sent. After that, the Parameter Name “Interval” is reset to 0
(Parameter Value) using the SetParameter block. Otherwise, the program continues to increment
the interval by 1.

Process asset properties (Business Parameters)

Manual - Graphical Composition Page: 72/80

15.2 GetParameter

Usage

The GetParameter block pulls the value of a parameter.

Input/Output

Input and output values can only be strings.

Example

Fig. 67: Example for GetParameter

In this example, the machine status is requested once per second. This is done using the
GetParameterblock. The name of the parameter (Parameter name) is Machine Status.
If this name does not equal the status Production, the entry Something is wrong shall be written
to the log file using the Debug out block. In any other case, the message All is well is written to
the log (Debug out).

15.3 DeleteParameter

Usage

The DeleteParameter block resets the parameter value in the database to 0.

Process asset properties (Business Parameters)

Manual - Graphical Composition Page: 73/80

Input/Output

Only strings are possible as input values. There are no restrictions to the output.

Example

Fig. 68: Example for DeleteParameter

If the signal I1 is equal to(=) 1, the statement of the mathematical comparison = True (1). In this case,
the DeleteParameter block resets the Parameter name COUNTER to 0.

15.4 DeleteAllParameter

Usage

The DeleteAllParameter block deletes all parameters. It is used in the same way as the
DeleteParameter block.

⚠ All parameters already used will also be reset to zero.

Input/Output

There are no restrictions to the input and output values.

Glossary

Manual - Graphical Composition Page: 74/80

16 Glossary

Abbreviations and terms used Description

Bit The smallest memory unit in a computer: 0 or 1

ERP
Enterprise Resource Planning (a software solution for
resource planning within companies)

Hexadecimal number
A number system that consists of 16 possible digit symbols
and is used to facilitate the readability of large numbers or
long bit sequences, e.g., in the ASCII table

IoT Internet of Things

MES Manufacturing Execution System

SFT Shopfloor Terminal

UTC Coordinated Universal Time

°C Degree Celsius

Annex

Manual - Graphical Composition Page: 75/80

17 Annex

17.1 Parameter overview

Blocks Other Input Output

Variables

Get [Variable] N/A Depends on the selection of
String, Number or Boolean

Set [Variable] to Depends on the
selection of String,
Number or Boolean

N/A

Signals

Set [Signal] to N/A N/A

Get Signal N/A N/A

Get base / scaled value
for

 N/A Number

Events

SendImpulse
Impulse count
Reference
Customer specific
settings

Optional
Optional

Number
String
String

N/A
N/A
N/A

SendQuantity
Quantity
Unit
Quality details
Reference
Customer specific
settings

Optional
Optional
Optional
Optional

Number
String
String
String
String

N/A
N/A
N/A
N/A
N/A

SendState
State
Status codes
Reference
Customer specific
settings

Optional
Optional
Optional

String
String
String
String

N/A
N/A
N/A
N/A

SendSignalValue
Signal name
Value
Unit
Reference
Customer specific
settings
Timestamp

Optional
Optional
Optional
Optional

String
String
String
String
String
String

N/A
N/A
N/A
N/A
N/A
N/A

SendSignalPackage
Signal name

String
String

N/A
N/A

Annex

Manual - Graphical Composition Page: 76/80

Blocks Other Input Output

Value
Unit
Reference
Customer specific
settings

Optional
Optional
Optional

String
String
String
String

N/A
N/A
N/A
N/A

SendGenericInformation
Parameter name
Parameter value
Reference
Customer specific
settings

Optional
Optional

String
String
String
String

N/A
N/A
N/A
N/A

SendState
Status codes
Reference
Customer specific
settings

Optional
Optional
Optional

String
String
String

N/A
N/A
N/A

Logical

If-do
If
Else if
Else
Do

Optional
Optional

Boolean
Boolean
Boolean
Any

N/A
N/A
N/A
N/A

Mathematical
comparison =/≠/</>/≤/

 Number Boolean

Logical connective
AND/OR

 Boolean Boolean

Logical connective
equal/not equal

 String Boolean

Rising/Falling edge Boolean Boolean

“NOT” statement Boolean Boolean

Truth statement N/A Boolean

Repeaters

Once per Drop-down menu N/A

Arithmetic

Number field Number Number

Math operation +/-
/*/:/sin/cos/tan/sqrt

 Number Number

ToNumber N/A Number

Logging

Logging String N/A

Text

String N/A String

Append String String String

ToString N/A String

Annex

Manual - Graphical Composition Page: 77/80

Blocks Other Input Output

Length String Number

SplitString
Input string
Separator
Index

String
String
Number

String
String
Number

FromAscii Number String

Substring
Input string
Start index
End index

Optional

String
Number
Number

String
N/A
N/A
N/A

Lists

ListNew String Drop-down menu

ListAdd String N/A

ListClear Drop-down menu N/A

ListDelete Drop-down menu N/A

GetList N/A String

Date and time

FormatTime
Format
Offset
Offset unit

String
Number
Drop-down menu

String
String
String
String

AtTime Do Number N/A

Sleep Number N/A

ConvertToTimeStamp
Date
Format

String
String

Long
String
String

CurrentSystemTimestamp N/A Long

Misc

HttpPost
Url
Payload

String
String

N/A
N/A

Get [specific] Data Drop-down menu String

GetMachineStatus N/A String

Offline N/A Boolean

IpAddress N/A String

Host N/A String

Business Parameters

SetParameter
Parameter name
Parameter value

String
String

N/A
N/A

GetParameter String String

DeleteParameter String N/A

DeleteAllParameter N/A N/A

Annex

Manual - Graphical Composition Page: 78/80

17.2 ASCII table

Dec Char Description

0 NUL No input

1 SOH
Start of heading

Beginning of the
header

2 STX
Start of Text

Beginning of a text
part

3 ETX
End of text

End of a text part

4 EOT
End of

transmission

Completion of a
transmission

5 ENQ
Enquiry

A request for a
response from the
receiving station

6 ACK
Acknowledge

Confirmation

7 BEL
Bell

Generates an
audible signal

8 BS
Backspace

Moves the cursor
one position to
the left and
removes the
character at this
position

9 TAB
Horizontal tab

Tabulator for
horizontal
indentation of the
next text character

10 LF
Line feed

Line break

11 VT
Vertical tab

Tabulator for
horizontal
indentation of the
next text character

12 FF
Form feed

Page jump

13 CR
Carriage return

Positions the
cursor at the
beginning of a line

14 Shift out Moves the cursor
out

15 SI
Shift in

Moves the cursor
inside

16 DLE
Data link
escape

Shift character

Dec Char Description

17 DC1
Device control

1

Device-specific
function -
often used as XON

(continue

transmission)
18 DC2

Device control
2

Device-specific
function

19 DC3
Device control

3

Device-specific
function -
often used as XOFF

(pause transmission)
20 DC4

Device control
4

Device-specific
function

21 NAC
Negative

acknowledge

Negative
confirmation

22 SYN
Synchronous

idle

In synchronous
data
transmissions,
enables
synchronization
even in the
absence of signals
to be transmitted

23 ETB
End of trans.

Block

Indicates the end
of a data block

24 CAN
Cancel

Cancel

25 EM
End of medium

Indicates the end
of a medium.

26 SUB
Substitute

Replace

27 ESC
Escape

Cancels an activity

28 FS
File separator

Separation of main
groups

29 GS
Group

separator

Group separation

30 RS
Record

separator

Subgroup
separation

31 US
Unit separator

Separation of
parts of a group

Annex

Manual - Graphical Composition Page: 79/80

Dec Char Description

32 Space Blank character

33 !

34 ″

35 #

36 $

37 %

38 &

39 ‛

40 (

41)

42 *

43 +

44 ,

45 -

46 .

47 /

48 0

49 1

50 2

51 3

52 4

53 5

54 6

55 7

56 8

57 9

58 :

59 ;

60 <

61 =

62 >

63 ?

64 @

65 A

66 b

67 C

68 D

69 E

70 F

71 G

72 H

73 I

74 J

75 K

76 L

77 M

78 N

79 O

Dec Char Description

80 P

81 Q

82 R

83 S

84 T

85 U

86 V

87 W

88 X

89 Y

90 Z

91 [

92 \

93]

94 ^

95 _

96 `

97 a

98 b

99 c

100 d

101 e

102 f

103 g

104 h

105 i

106 j

107 k

108 l

109 m

110 n

111 o

112 p

113 q

114 r

115 s

116 t

117 u

118 v

119 w

120 x

121 y

122 z

123 {

124 |

125 }

126 ⁓

Annex

Manual - Graphical Composition Page: 80/80

Dec Char Description

127 DEL
Delete

Delete the last
character

	1 About this document
	2 Graphical composition in EDGE CONNECT
	3 Working with the graphical composition
	3.1 The user interface
	3.2 Blocks and function categories
	3.2.1 Function categories
	3.2.2 Structure and properties of the blocks
	3.2.3 Shadow blocks
	3.2.4 Optional blocks for extension

	3.3 Working in the graphical editor
	3.3.1 Reading direction of the blocks
	3.3.2 Add and edit blocks
	3.3.3 Notation of numbers
	3.3.4 Error detection

	4 Process variables (Variables)
	4.1 [Variable] - read variable
	4.2 Set [Variable] to

	5 Interpret signals (Signals)
	5.1 Set [Signal] to
	5.2 [Signal] - Read signal value
	5.3 Get base / scaled value for

	6 Define events (Events)
	6.1 SendImpulse
	6.2 SendQuantity
	6.3 SendState
	6.4 SendSignalValue
	6.5 SendSignalPackage
	6.6 SendGenericInformation
	6.7 SendState [Selection]

	7 Make logical connections (Logical)
	7.1 if-do
	7.2 Mathematical comparison (=/≠/</>/≤/)
	7.3 ‚And/or‘ (logical connective)
	7.4 equal/not equal (logical connective)
	7.5 Rising/Falling edge (detect edges)
	7.6 “not” statement (negation)
	7.7 True/False

	8 Repeaters
	8.1 Once per

	9 Maths operations (Arithmetic)
	9.1 Number field
	9.2 Mathematical operation
	9.3 ToNumber

	10 Log values (Logging)
	10.1 Debug out

	11 Create and process texts (Text)
	11.1 String
	11.2 Append String
	11.3 ToString
	11.4 Length
	11.5 SplitString
	11.6 FromAscii
	11.7 Substring

	12 Create and manage lists (Lists)
	12.1 ListNew
	12.2 ListAdd
	12.3 ListClear
	12.4 ListDelete
	12.5 [List] - Insert list

	13 Managing times (Date and time)
	13.1 FormatTime
	13.2 AtTime Do
	13.3 Sleep
	13.4 ConvertToTimeStamp
	13.5 CurrentSystemTimestamp

	14 Additional actions (Misc)
	14.1 HttpPost
	14.2 Get [specific] Data
	14.3 GetMachineStatus
	14.4 Offline
	14.5 IpAddress
	14.6 HostName

	15 Process asset properties (Business Parameters)
	15.1 SetParameter
	15.2 GetParameter
	15.3 DeleteParameter
	15.4 DeleteAllParameter

	16 Glossary
	17 Annex
	17.1 Parameter overview
	17.2 ASCII table

