

 Document: Manual - FORCE EDGE CONNECT

 Release date: 2024-01-12

 Document version: 1

 Author: FORCAM GmbH

FORCE EDGE CONNECT
Version: 240112

Manual

Contents

Manual - FORCE EDGE CONNECT Page 2/68

Contents

1 About this document .. 4

2 Concept .. 5

3 System components ... 6

3.1 EDGE Node ... 6

3.1.1 Southbound Link ... 6

3.1.2 Signal Composition ... 7

3.1.3 Northbound Link ... 7

3.1.4 Data Lake .. 8

3.2 EDGE Configuration .. 8

3.3 Machine Repository ... 8

3.4 System architecture ... 9

4 Deployment ...11

5 Basic settings ...12

5.1 User management .. 13

5.1.1 Roles and permissions .. 15

5.2 External master data .. 17

5.3 Licensing .. 20

5.4 Download Area .. 21

5.5 Monitoring the EDGE Configuration .. 21

5.6 Table Sorting .. 22

6 EDGE Configuration ...23

6.1 Add EDGE node .. 25

6.2 Edit the Data Lake of a node ... 27

6.3 Add asset ... 28

6.3.1 ① Template ... 29

6.3.2 ② Basic information .. 30

6.3.3 ③ Additional information ... 32

6.3.4 ④ MDC-configuration ... 33

6.3.5 ⑤ Signal .. 34

6.3.6 ⑥ Composition ... 36

6.3.7 ⑦ DNC Configuration .. 38

6.3.8 ⑧ Overview ... 39

Contents

Manual - FORCE EDGE CONNECT Page 3/68

6.4 Northbound Configuration ... 40

6.4.1 Signals and events from EDGE to superordinate system ... 42

6.4.2 Data & documents from superordinate system to EDGE ... 47

6.4.3 Configuring an event .. 47

6.5 Integration ... 50

7 Monitoring ..52

8 Annex ..54

8.1 Document conventions .. 54

8.2 Abbreviations and terms used ... 54

8.3 List of supported plug-ins ... 56

8.4 Standardized events ... 59

8.5 Script examples .. 60

8.5.1 Asset status and temperature .. 60

8.5.2 Temperature and humidity ... 60

8.5.3 Crane control .. 61

8.5.4 Signal package .. 63

8.6 Script functions .. 66

About this document

Manual - FORCE EDGE CONNECT Page 4/68

1 About this document

This document describes how to use FORCAM FORCE EDGE CONNECT.
The manual describes the different components and functions that are available for connecting
assets, and the possibilities that the application offers for signal interpretation and transmission.

Target group

The manual requires, among other, basic knowledge in signal processing and electronic data
processing as well as certain knowledge regarding the controllers and communication protocols
used.
If you do not have any knowledge in this area, take the time to familiarize yourself with the basics.

 We recommend that you use our Academy: https://forcam.com/academie/

The FORCAM Academy provides the knowledge to effectively use the methods for digital
transformation and the technologies for the Smart Factory.
Based on lean manufacturing and TPM methods, our institute team will guide you and provide
support to initiate changes in the company and to use the technologies correctly.

ⓣ Our Customer Area provides all manuals, product descriptions and further information about your
release. Additional information on graphical signal composition can be found in the Manual -

Graphical composition there.

https://forcam.com/academie/
https://forcam.com/customer-area/

Concept

Manual - FORCE EDGE CONNECT Page 5/68

2 Concept

FORCE EDGE CONNECT (hereafter simply referred to as EDGE CONNECT) offers manufacturing
companies a solution for digitizing almost any asset, regardless of its age or technical state. An asset
is a generic term for all objects that EDGE CONNECT can connect, such as machines, sensors, data
beacons and IT systems. Thus, FORCAM supports the digital transformation of manufacturing
processes in the Green- and Brownfield environment.

FORCAM therefore delivers a product that addresses the main requirement of Industry 4.0 by
extracting digital information from the production asset. This closes the gap between IT (information
technology) and OT (operative technology).

EDGE CONNECT offers a variety of possible methods to connect assets, it sends the asset signals to
superordinate systems by means of standardized events. These can be ME (Manufacturing
Execution) or MOM (Manufacturing Operation Management) systems such as SAP DM/ME or MII,
among others. FORCAM can thus reduce the time and effort required for digitization and create a
standardized interface to the machine park. The assets are connected using plug-ins. Many common
manufacturer-specific (proprietary) protocols are presently supported (such as HEIDENHAIN,
Siemens S7 or FANUC & Co.) as well as many common communication standards (such as
MTConnect, OPC UA or MQTT). In case an asset is not network-capable, the FORCAM I/O Controller
is available as separate hardware for digitizing such assets.

The asset connections are used to obtain a wide variety of information. This includes information
about the current status asset or their sensor readings such as temperatures, pressures or energy
consumption. In the Brownfield as well as in the Greenfield environment it is important not only to
read the signals and pass them on, but also to interpret them for further processing. This is done by
the Signal Composition component. This makes it possible, for example, to find out when an asset is
actually in production or at a standstill. Another essential part of the solution is the handling of NC
programs and the possibility to transfer them to and from asset.

The modern and also cleanly structured menu navigation of EDGE CONNECT makes it possible to
digitally connect asset in a quick and efficient way using the available control and signal information.

The Machine Repository makes it easy to create and use templates. Templates are used for recurring
settings when connecting assets. They already contain all the important general information. Only
individual information, such as IP address or serial number, must be added. With the MR, you can
either define templates for asset connections or you can derive a template from an existing
connection and use this template to connect further assets of the same machine type. The template
structure ensures a standardized connection of identical assets, thus enabling the comparison of
assets of the same type. This further reduces the individual effort required to connect an asset,
enabling the time- and resource-efficient implementation of digitization projects.

EDGE CONNECT is flexible and can be applied to any manufacturing company. The individual
components of the solution can be located in different areas and levels and provide benefits at each
level.

System components

Manual - FORCE EDGE CONNECT Page 6/68

3 System components

This chapter describes the individual EDGE CONNECT components and their functions.

Fig. 1: Schematic structure of EDGE CONNECT

3.1 EDGE Node

The EDGE NODE is the central element of EDGE CONNECT when it comes to connecting assets. It
consists of the following key components:

3.1.1 Southbound Link

The Southbound Link component is responsible for the communication between EDGE CONNECT and
the asset. In terms of infrastructure, EDGE CONNECT is located above the asset level (shopfloor). This
is why we refer to the communication between assets and EDGE CONNECT as “southbound”
communication.
The following three components manage the communication:

Plug-ins

The plug-ins used in the EDGE CONNECT establish communication links with specific machine
controllers. They also standardize the data, thus making evaluations more comparable.
They allow direct communication with various machine controllers, but also cover modern
communication protocols such as MQTT, UPC UA and many more.
The plug-ins are divided into those for Machine Data Collection (MDC) and for Distributed Numerical
Control (DNC).

System components

Manual - FORCE EDGE CONNECT Page 7/68

‒ MDC plug-ins for machine data collection

These include plug-ins designed for unidirectional reading of machine signals as well as plug-
ins for bidirectional signal transmission, i.e., for reading and writing back signals.

‒ DNC plug-ins for transferring and reading NC files
These plug-ins can be used to transfer NC programs to the machine's file system or to query
the program that is active on the machine.

⚠ EDGE CONNECT is not intended to be used for providing, editing, or managing NC programs.

For the most common control types, a set of plug-ins is included in EDGE CONNECT by default. The
annex lists all FORCAM plug-ins that are currently available.

3.1.2 Signal Composition

This component is used to derive logical asset states. This allows standardized events to be derived
from signal combinations. Events are messages that are sent to a third-party system.
Signal composition also makes it possible to react to events and to write values to the control unit of
the asset (if this is supported by control unit and protocol).
Such a composition can be implemented in EDGE CONNECT either via a script or using a graphical
solution. The graphical composition provides an easy introduction into the world of signal
composition. (For more information about this editor, see the Manual - Graphical Composition).

3.1.3 Northbound Link

The Northbound Link makes asset data from the Signal Composition in EDGE CONNECT available to
any third-party system. In terms of infrastructure, the 3rd party system is located above EDGE
CONNECT. This is why we refer to the communication between EDGE CONNECT and 3rd party
systems as “northbound” communication.

Fig. 2: Northbound Link

System components

Manual - FORCE EDGE CONNECT Page 8/68

The Northbound Link component is used to forward asset data to superordinate systems (3rd party
systems) in the form of standardized events. The following options are available for connecting
superordinate systems:

‒ HTTP/REST

‒ MQTT

‒ Apache Kafka

‒ OPC UA

‒ NATS.io

The message content can be configured for each connection and event. If MQTT, NATS.io or Apache
Kafka are used, a broker is required as middleware.
The Northbound Link is delivered with preconfigured standard events for communication with the
MES or ERP level. If necessary, these can be further individualized.

⚠ The middleware (broker) must be provided and configured separately. It is not part of the EDGE
CONNECT.

3.1.4 Data Lake

To obtain a digital twin of an asset or control unit, it is not only important to establish the connection
to the asset, interpret the signals and pass them on to other applications, but also to store the data.
With the Data Lake component, all data is stored at signal level, at signal interpretation level
(Signal Composition) and at event level. This includes changes in the configuration, write operations
and transferred NC files. Data is made available via the Data Lake API. This allows the latest AI
algorithms, visualization tools, but also audit requirements to benefit. The Data Lake is designed as
short-term data memory.

⚠ The Data Lake component must be purchased separately, in addition to EDGE CONNECT.

3.2 EDGE Configuration

EDGE Configuration is the user interface for EDGE CONNECT. It can be used to manage multiple EDGE
nodes. An EDGE node is the bundling of signal collection from several assets. Depending on the
amount of data, one or more EDGE nodes are used per plant. Node administration is done centrally
in the EDGE Configuration.

3.3 Machine Repository

The Machine Repository allows templates to be generated from existing asset connections or for new
ones. These templates can be used to connect assets of the same type and the same usage type in a
standardized manner. The template contains all configuration elements that are not asset-specific.
Asset and connection-specific configuration elements are, for example, IP address, serial number,
equipment number, etc. In addition, templates lead to a standardized and unified asset
configuration, which makes data more comparable when it comes to evaluation.

⚠ The Machine Repository must be purchased separately in addition to EDGE CONNECT.

System components

Manual - FORCE EDGE CONNECT Page 9/68

3.4 System architecture

EDGE CONNECT is architecturally divided into levels (layers). These are based on the business use
case, which enables a high scalability of the individual components. For example, multiple EDGE
nodes can be hosted to divide the assets logically, but also based on performance.

Each component can run independently even if there is no active connection to other components of
EDGE CONNECT (e.g., due to temporary loss of connection). This enables a wide variety of
deployment.
All components communicate via standardized interfaces (HTTP/REST).

Level 0 - Assets

The lowest layer is where the assets, sensors and actuators are connected.

Level 1 - Connectivity

The growing selection of plug-ins facilitates the connection of a wide variety of controllers with their
different communication standards such as OPC UA or MT Connect, as well as manufacturer-specific
protocols.

Level 2 - Application

The number of possible EDGE nodes is not limited. A node encompasses several layers or tasks.

Level 3 - Plant

System components

Manual - FORCE EDGE CONNECT Page 10/68

The configuration component can serve 1 (minimum) to n EDGE nodes. This can be provided per
plant, as well as per production line.

Level 4 - Enterprise

The Machine Repository is an EDGE CONNECT extension that lets you create and manage asset
connection templates.

Deployment

Manual - FORCE EDGE CONNECT Page 11/68

4 Deployment

Fig. 3: Options for installing EDGE CONNECT

For the installation, an installer is provided in which the EDGE Configuration, the EDGE Node and
(optionally) the Machine Repository are included. These are installed either by the customer or by a
FORCAM service provider.
EDGE Configuration contains the entire user interface including all functions.
EDGE Node contains the EDGE node and can be installed as often as needed, since the number of
nodes is only limited by the license. The maximum number of nodes depends on the chosen
subscription model. This defines how many nodes can be created and how many assets can be
connected per node.
The Machine Repository contains the user interface along with its functions. It can support a large
number of EDGE instances. An EDGE instance is composed of an EDGE Configuration with its
associated EDGE Nodes.

⚠ The Machine Repository component must be purchased separately, in addition to EDGE
CONNECT.

 For more information, see the Installation Guides and the System Requirements documents.

Basic settings

Manual - FORCE EDGE CONNECT Page 12/68

5 Basic settings

General settings are made in the EDGE CONNECT menu (Fig. 4). The following chapters contain
information on these settings:

‒ User management

‒ External master data

‒ Licensing

‒ Download area

‒ Monitoring

 The Profile menu entry allows to view and change the data of the current user. These settings
only apply to the user that is currently logged in.

Fig. 4: Calling the EDGE CONNECT menu

Basic settings

Manual - FORCE EDGE CONNECT Page 13/68

5.1 User management

Users for EDGE CONNECT are created in the user administration. Depending on the role a user has
within the company, a role can be assigned to the user that contains only those functions that are
appropriate or intended for the required task (configure assets with or without templates, restart
nodes, configure the Northbound interface, etc.).

The detail view of the user management shows all users that are available in the system. From this
view, you can create new users or edit data of existing users.

Fig. 5: User management in EDGE CONNECT

(1) Create new user
(2) Edit user data

ⓣ The general user data for the current user can also be changed in the profile settings (Profile
entry in the EDGE CONNECT menu).
Role assignment, however, is only possible via user management.

The following information can be entered when creating or editing a user:

Basic settings

Manual - FORCE EDGE CONNECT Page 14/68

Fig. 6: Dialog for entering user data

Basic settings

Manual - FORCE EDGE CONNECT Page 15/68

Input field Description

Username
Unique identification of the user, which is also required to
log in

Email

First name

Last name

Optional information fields

Language Desired language of the user interface

Darkmode
Activates dark mode for the display (dark background,
light-colored text)

Password

Requirements:

‒ at least 8 characters

‒ Upper- and lower-case letters

‒ At least one number and one special character

The following special characters are permitted:
! " # $ % & ' () * + , - . / : ; < = > ? @ [\] ^ _` { | } ~

User rights

See section 5.1.1 Roles and permissions.

If a higher-level role is selected, the user automatically also
has the permissions of the lower-level role(s) assigned.

5.1.1 Roles and permissions

The following table shows all roles that can be assigned to a user. Please note that a higher-level role
"inherits" the rights of the lower-level role. Users that have no role assigned can view the data on the
UI but cannot use any other functions.

 Once the permissions of a logged-in user have been changed, they take effect immediately after
a new login. However, it may take up to 30 minutes for the change to take effect if the user does
not log in again.

Basic settings

Manual - FORCE EDGE CONNECT Page 16/68

Level Role Permissions

0 <No role assigned> Basic rights (view data, not all functions are visible)

1

Asset Implementer

‒ create assets using MR templates only (cannot change
templates)

‒ manage assets (change, delete, copy)

‒ call the Monitoring view of the EDGE Configuration

‒ transfer and connect asset master data from a third-party
system to EDGE CONNECT

2

Node Engineer

Has all the permissions of the Asset Implementor role and
can also...

‒ create assets without using an MR template

‒ modify asset data that was imported from MR templates

‒ restart an EDGE node

‒ configure the Northbound interface

‒ edit or delete EDGE nodes and make changes to event
configurations

‒ import and change licenses

3 Super User
This user can use all functions of the application without
limitations (including user management).

Basic settings

Manual - FORCE EDGE CONNECT Page 17/68

5.2 External master data

‘External Master Data’ is an extension that you can use to transfer asset master data from third-party
applications to EDGE CONNECT.

Asset master data can be created via a third-party application such as SAP DM. To avoid having to
create this again in EDGE CONNECT, the data can be transferred to EDGE Configuration via the API
interface. This reduces the effort required to create an asset in EDGE CONNECT and supports
consistency or synchronization of asset master data.

 ‘External master data’ can be used to create assets based on basic information from third-party
systems. Connection-specific information can be entered through a template or manually.
It is not possible to delete assets through the API. The assets can, however, be marked as
deleted.

If the master data is received from the third-party application, the data can be used to create new
assets in EDGE Configuration. All new assets are displayed on the External Master Data page and are
initially given the status New master data. They can be completely configured here and assigned to
an EDGE node.

Fig. 7: Newly received asset master data

The following master data can be created via the API:

‒ Asset name

‒ Asset type

‒ Asset class

‒ Manufacturer

‒ Model

‒ Serial number

‒ External machine ID

Basic settings

Manual - FORCE EDGE CONNECT Page 18/68

‒ Inventory no.

Finishing the asset configuration

The external master data can be created on an existing EDGE node. For this purpose, the
configuration dialog for adding an asset is opened (see section 6.3). The master data received
through the API get a higher priority.
Example: An asset was created via the API. Later, a template is selected for use during asset
configuration. Nevertheless, the application continues to use the master data that was transferred
via the API. The master data of the template will be discarded.

To provide external master data to EDGE CONNECT:

1. Call Swagger.
IP address (of the EDGE Configuration) + 60066/api/configuration/supplied-master-data

2. Configure and send the POST in Supplied Master Data.
➔ Asset can be found under External Master Data in the EDGE CONNECT menu.

To create new master data on a node:

1. Call External Master Data from the menu.
2. Click on the plus icon on the right of the desired master data.
3. In the subsequent dialog, select an EDGE node on which the master data is to be created.
4. Click on Select.

➔ The configuration dialog for adding an asset opens. Master data received through the
API is pre-filled.

1. 4. Make further configurations as desired (see section 6.3).

Fig. 8: Selecting an EDGE node to create external master data

Changing asset master data via API

All asset master data can be changed via the API after it has already been initially sent. If the third-
party application changes the master data, the corresponding status in the table of external master
data changes to Modified master data. In addition, a message on the EDGE CONNECT start page
informs the user about the changed master data.
The pencil icon can be used to decide which of the changes should actually be applied.

To apply changes to master data:

1. Click the pencil icon (on the right) of the desired master data.

Basic settings

Manual - FORCE EDGE CONNECT Page 19/68

➔ The subsequent dialog lists all changes that have been made to the selected master
data.

2. Deactivate the check box behind the desired data whose changes are not to be applied.
By default, all switches are activated.

3. Click on Accept.
4. Optional: Restart the corresponding node.

Fig. 9: Confirmation of asset master data changes

Marking an asset for deletion via API

When an asset is deleted in the third-party application, it receives the status To be deleted under the
Supplied Master Data page. Once you confirm the deletion in the EDGE node, the asset is removed
from the node as well as from the table of the page.

Basic settings

Manual - FORCE EDGE CONNECT Page 20/68

5.3 Licensing

Licenses can be imported and viewed under Licensing.

Fig. 10: Licensing and overview

(1) A new license can be uploaded as a file or entered directly as a key.
(2) License information consists of type and status of the license, number of licensed nodes and

assets, maintenance, validity, and other data.
(3) All booked add-ons are listed here.

Clicking an add-on tile displays further information, such as provided URLs.

Basic settings

Manual - FORCE EDGE CONNECT Page 21/68

5.4 Download Area

The current EDGE CONNECT documentation can be downloaded in several languages from the
General tab. Currently, the user manual and a product description are available. The manual is the
document at hand, with detailed configuration instructions. The product description is a shorter
document describing only the function and benefits of the application and a listing of the scope of
performance functions.

In the MDC Plug-ins and DNC Plug-ins tabs, FORCAM provides additional applications. They are
needed to communicate with an asset via the corresponding plug-in. The applications enable
bidirectional communication.

5.5 Monitoring the EDGE Configuration

The monitoring function that can be called from the menu is used to monitor the
EDGE Configuration. The monitoring of the EDGE Node components is displayed on a separate page
and described in chapter 7. However, the structure of the monitoring tiles is the same.

The following tile monitors the status of the transmissions of templates via the API. It specifies all the
information that is logged during the process.

Fig. 11: Monitoring template transmissions via the API

Basic settings

Manual - FORCE EDGE CONNECT Page 22/68

5.6 Table Sorting

Most pages in EDGE CONNECT display data in the form of tables. You can sort the columns
alphabetically in ascending or descending order.

Ascending

Descending

No sorting

Those columns that relate specifically to DNC and MDC, specify a status instead of a string. The
sorting arranges the statuses alphabetically and additionally groups them by content.

Fig. 13: Alphabetical sorting and content grouping

Fig. 12: Alphabetical sorting of columns

EDGE Configuration

Manual - FORCE EDGE CONNECT Page 23/68

6 EDGE Configuration

The configuration of an EDGE node as well as an asset is done completely in the EDGE Configuration
component of EDGE CONNECT. The user-friendly interface will guide you through all relevant settings
and shows all nodes and the statuses in the overview.

Fig. 14: EDGE CONNECT entry and overview page

(1) EDGE CONNECT Home menu
(2) Indicates the number of already configured EDGE nodes (first number) and the total number

of nodes that can be configured in accordance with the license (second number).
(3) Adds a new EDGE node
(4) Status of the EDGE node
(5) Node settings menu:

‒ Edit

‒ Delete
(6) Change display of the EDGE node; indicates that the note must be restarted (if required)
(7) Number of connected assets
(8) More detailed node information:

‒ List of all connected assets and their status

‒ Option to add a new asset

‒ Monitoring of connected assets

‒ Northbound configuration

‒ Restart of the node

EDGE Configuration

Manual - FORCE EDGE CONNECT Page 24/68

Fig.15:: Asset overview as next page after clicking the EDGE Node

The icon (1) can be used to display additional information about the node.

The version (2) indicates the latest implementation of the template.

Configuration lets you manually determine a status for the configuration, to provide a better
overview to users:

‒ In progress:
The configuration is not yet complete and is to be continued at another time.

‒ In validation:
The configuration of the asset should be checked for errors and consistency.

‒ Completed:
Configuration is finished. This is the only status in which the MR learning cycle can take place
to generate a template from the configuration.

EDGE Configuration

Manual - FORCE EDGE CONNECT Page 25/68

6.1 Add EDGE node

EDGE CONNECT lets you add nodes in just a few steps. An EDGE node can represent a plant or a
production line in a plant. There can be several nodes per plant. They are logically bundled so the
asset workload can be distributed efficiently.

If a configured EDGE node is removed from the interface, its configuration is preserved. If the node is
recreated under the same data, it automatically adopts the previously configured data.

Fig. 16: Dialog for adding a new node

To add a new EDGE node:
1. In the node overview (Home), click on + EDGE node.
2. Fill in all mandatory fields (*) in the next dialog:

‒ Name:
Appears as the node title in the node overview

‒ URL:
Consists of https + IP address+ port 60067 (Ex.: https://127.0.0.1:60067)
Only one EDGE node can be created per URL. This restriction also applies for other
configurations.

‒ API key:
Password that was assigned during the initial node installation

‒ Upload certificate:
Certificate of the EDGE node that was created before the installation and was used during
the installation

3. Optional: Add description.
4. Save.

➔ A pop-up message appears for a short time at the bottom left of the screen: To
connect the node correctly, the reload command mentioned in this message must be
executed on the EDGE Configuration server (see next step).

https://127.0.0.1:60067/

EDGE Configuration

Manual - FORCE EDGE CONNECT Page 26/68

Fig. 17: Pop-up message with reload command

5. Execute the reload command on the EDGE Configuration server:
docker exec -i edge-config-nginx nginx -s reload

6. Log in to EDGE CONNECT again.
➔ After the next login, the newly created node is correctly connected, and all node

information is visible.

⚠ It is absolutely necessary to execute the command on the configuration server after a node has
been created. Otherwise, the node cannot be connected correctly, and no node actions can be
performed.

EDGE Configuration

Manual - FORCE EDGE CONNECT Page 27/68

6.2 Edit the Data Lake of a node

It is possible, of course, to edit a node after creation. In addition to the fields already mentioned, the
settings for editing a node also include information and settings for the Data Lake.

Fig. 18: Dialog for editing an already existing node

To edit an existing EDGE node:

1. Navigate to the node overview (Home).
2. Click on the three dots next to the name of the node you want to edit.
3. Click the Settings option.
4. Navigate to the DATA LAKE tab on the left.
5. Edit the values.
6. Click on Save.

While editing an existing node, the retention policy for the Data Lake can be defined. A retention
policy describes a rule that defines how data is treated within the Data Lake. This only refers to the
deletion of asset-generated data (configuration data or other is not affected). A time frame can be
defined for which the asset-generated data will be stored in the Data Lake. The time is defined in
days. One retention policy refers to exactly one EDGE node and must therefore be created/defined
separately for each node, as the retention policy is not activated by default. Once a retention policy
has been created, it is automatically active and takes effect, i.e., “outdated” data is deleted. This
process cannot be stopped, but the time frame of an existing policy can be changed afterwards. This
is not the same as to cancel the process, because the application has already started processing the
initial policy, so data might already have been deleted.

⚠ The Data Lake should be considered a short-term repository. The technical requirements from
the System Requirements document must be observed!

EDGE Configuration

Manual - FORCE EDGE CONNECT Page 28/68

6.3 Add asset

A Configuration Wizard guides you through eight steps required to connect an asset. This is where
MDC/DNC controls are configured and asset signals are defined, among other things.

 Negative values are not permitted in the asset configuration.

ⓣ Once a step is completed, it is highlighted in blue in the top bar.
To return to an already completed step, click on the step.
While an already configured asset is edited, each configuration page can be selected and called
up directly.

Fig. 19: Dialog for configuring an asset in EDGE CONNECT

To add an asset:
1. Click on + Machine in the node details.

➔ The Configuration Wizard guides you through the following eight steps for configuring
an asset.

2. Click Apply to finish.

⚠ All settings in the Configuration Wizard must be saved at step ⑧ with Save, otherwise the entire
configuration will be lost.
Opening another menu will also cause the configuration to be discarded.

EDGE Configuration

Manual - FORCE EDGE CONNECT Page 29/68

6.3.1 ① Template

In EDGE CONNECT, multiple assets of the same type do not have to be completely reconfigured each
time: Once an asset has been configured, it can be entered as a template in the Machine Repository
and will then be offered for the next asset connection in this mask. If the template is selected at this
point, all settings are automatically used for this asset and all configuration fields that are not asset-
specific are pre-filled. Only the information related to the asset (e.g., serial number) and to the
connection (e.g., IP address or port of the asset or controller) must still be edited.

The VERSION indicates the revision status of the template. If a template is revised, the version
number is automatically incremented by 1, and the earlier version is overwritten. Version 0 means
that no script is configured in the corresponding template.

 This step is only available if the MR extension is used. If no template is configured or MR is not in
use, the Configuration Wizard will start in step ②.

Fig. 20: Configuration Wizard – select template

1. In the list, select the desired template for connecting the asset.
2. Click Next.

 If you do not use a template for asset connection, click Skip.

EDGE Configuration

Manual - FORCE EDGE CONNECT Page 30/68

6.3.2 ② Basic information

In this step, basic information of the asset to be configured is defined, such as name or serial
number. In addition, you determine whether an MDC or a DNC control is to be configured, or both.
With the MDC controller, signals are collected from the asset and transmitted or written to it. DNC
controllers are used to transfer NC files to the asset.

Fig. 21: Configuration Wizard – entering basic information

Input field Description

Asset type

Selection:

‒ Machine

‒ Sensor

‒ IT System

Asset class
Selection varies depending on content in the
Asset type field

Manufacturer Free input field

Model Free input field

Machine name Free input field

External machine ID Free input field, optional

Serial no. Free input field

Inventory no. Free input field, optional

MDC:

Configure MDC

MDC activation

Activate switch if MDC is to be configured

Activate switch if MDC is to be used

DNC: Configure DNC
Activate switch if DNC is to be configured

Activate switch if DNC is to be used

EDGE Configuration

Manual - FORCE EDGE CONNECT Page 31/68

Activate DNC

Data Lake: Activate
Activate switch if Data Lake is to be used
(Switch is only displayed if the Data Lake
component is available)

Machine description Free input field, optional

EDGE Configuration

Manual - FORCE EDGE CONNECT Page 32/68

6.3.3 ③ Additional information

This step enables individual, plant-specific information to be added to an asset to further supplement
the asset's data. This data can later be retrieved from the API to provide more information to a third-
party system.

ⓣ Example: Name = location, value = hall 2.

This is where an additional locational aspect is added to the asset data to help accurately locate the
asset in the event of a malfunction.

 This step is optional.

Fig. 22: Configuration Wizard – defining additional information

1. Click on the + icon.
2. Enter the necessary parameters.

EDGE Configuration

Manual - FORCE EDGE CONNECT Page 33/68

6.3.4 ④ MDC-configuration

 This step is only available if Configure MDC was selected in step ②.

In this step, an MDC control can be configured. This specifies the way the asset is to be linked to
EDGE CONNECT.
The annex lists all FORCAM plug-ins that are currently available.

Here you select the appropriate plug-in and bus type for the controller. The other input fields vary
depending on this selection. Mandatory fields are marked with an asterisk (*).
The bus type is a specific communication protocol of the controller type. Many controllers only use
one protocol and thus only one bus type is available for selection.

Fig. 23: Configuration Wizard – configuring the MDC controller

 The Log telegrams function is used to store the UDP telegrams in the MDC log. The number of
characters to be logged for each telegram is specified in the input field.

EDGE Configuration

Manual - FORCE EDGE CONNECT Page 34/68

6.3.5 ⑤ Signal

This step defines which signals are read from the controller. Depending on the configuration of the
MDC controller (step ④), different listings of the signal types are displayed. The Data Lake can be
used to record and save all data. Data storage in the Data Lake can be switched on and off for each
signal. Units can be recorded on individual signals (e.g., Degrees Celsius or liters per minute), and
scaling factors can be defined. The scaling factor makes it possible, for example, to infer the
temperature by means of the resistance detected at an asset.

 If the ACTIVE switch for the signal is deactivated, it cannot be used in step ⑥ COMPOSITION.

Figure 24: Configuration Wizard -Creating and configuring signals

1. Click on the + icon.
2. Select the TYPE , enter a name for the signal and ,optionally, activate the switch for DATA

LAKE.
3. Specify plug-in-specific signal parameters.
3. Optional: Enter values for Unit & Scaling and Additional Information.
4. Click Next.

Input field Description

TYPE
Data type of the signal, selection differs depending on the type of
asset connection

SIGNAL Name of the signal, free input

ACTIVE Selection whether or not the signal should be actively detected

DATA LAKE
Selection whether or not the signal should be stored in the DATA LAKE
Option is only available if the Data Lake function is enabled.

Parameter Description

Addressing Address, input options depending on TYPE

Unit & Scaling ‒ Unit: selection from drop-down menu

EDGE Configuration

Manual - FORCE EDGE CONNECT Page 35/68

Input field Description

‒ Scale factor: Factor by which a value is multiplied in order to
interpret it correctly within its reference system

‒ Scale offset: Offset that must be taken into account when
interpreting values

Additional information
‒ Tags: keywords with which the signal is enriched

‒ Description: Free input

⚠ Once created, signals can no longer be changed.

EDGE Configuration

Manual - FORCE EDGE CONNECT Page 36/68

6.3.6 ⑥ Composition

In this step, the received signals are interpreted and interpretation conditions are defined. As a
result, measurement values, maintenance information and production states are available. This
makes it possible to draw logical conclusions about the behavior of the asset.

ⓣ We recommend creating internal company guidelines for signal composition. This creates a
uniform data model across all assets, which forms the basis for comparative evaluations.

There are two ways to implement this signal interpretation: In the SCRIPT section, text-based code is
displayed and edited (see Fig. 26), whereas in the GRAPHIC section graphical blocks can be used (see
Fig. 25).

⚠ Simultaneous editing in SKRIPT and GRAPHIC is not possible, neither can you switch from SKRIPT
to GRAPHIC.
Once changes are made in the script editor, further editing must be done there and the code will
no longer be displayed under GRAPHICS.

Graphical editor

The blocks in the graphical editor are programming blocks/modules that can be put together and
connected, similar to the individual pieces of a puzzle. The advantage of this modular system is that
you can create the required commands even if you are new to programming in general.

Fig. 25: Graphical editor

On the left side of the screen, all available function categories are listed, divided, and sorted by color.
Drag-and-drop can be used to move the required blocks to the editing area on the right and place
them in the correct order. This is where the actual asset logic is defined.

ⓣ For a detailed description of the individual function categories of the blocks, see the Graphical

Composition manual.

EDGE Configuration

Manual - FORCE EDGE CONNECT Page 37/68

Script editor

The annex of this manual contains sample scripts and script functions (see sections 8.5 and 8.6).

⚠ Only users that are familiar with programming should work in the SCRIPT editor.

Fig. 26: Script editor

(1) Shows the signals that were added in step 5 of the Configuration Wizard
(2) Editing area with current script
(3) Zoom in/out view (full screen)
(4) Check the current script for validity

 The script must be error-free. You can only proceed to the next configuration step if the script
has no errors.

EDGE Configuration

Manual - FORCE EDGE CONNECT Page 38/68

6.3.7 ⑦ DNC Configuration

In this step, a DNC control can be configured. Specifies the way an NC file is to be transferred to the
asset.
The annex of this manual lists all FORCAM plug-ins that are currently available.

 This step is only available if Configure DNC was selected in step ②.

Fig. 27: Configuration Wizard – DNC configuration (fields for FANUC plug-in)

Input field Description

Upload timeout (sec) Specification in seconds

Download timeout (sec) Specification in seconds

Plug-in for machine configuration

Drop-down menu containing all available plug-ins

 The other input fields are displayed depending on
this selection. Mandatory fields are marked with
an asterisk (*).

Auto delete
Switch activated = NC file is automatically deleted from
the asset after reading.

 Once the DNC configuration is completed, the connection can be tested.

EDGE Configuration

Manual - FORCE EDGE CONNECT Page 39/68

6.3.8 ⑧ Overview

This step provides a summary of the configuration settings from all steps and lists all defined signals.
After confirming, the asset is mapped with the specified configuration and is therefore digitized. The
configured asset appears under the specified name in the overview (see Fig.15:).

Fig. 28: Configuration Wizard – final overview

EDGE Configuration

Manual - FORCE EDGE CONNECT Page 40/68

6.4 Northbound Configuration

The Northbound configuration specifies how the signals are sent to a superordinate system. Payload
and endpoint are predefined by default, but they can be customized.

Fig. 29: Northbound configuration in EDGE CONNECT

Events are outgoing events that are generated via the script. For this, there are script functions
available that generate a corresponding event depending on the type.
There is a standardized Event for each type of event. For example, the Quantity event type sends the
quantity produced by the asset. All available events are listed in section 8.4.

EDGE Configuration

Manual - FORCE EDGE CONNECT Page 41/68

The Payload section in the JSON body defines how the message to the superordinate system should
look like. Finally, the placeholders (wildcards) are replaced by the corresponding existing signals.
Example of an event structure:

{

machineId: $machineId$
machineName: $machineName$
externalMachineId: $externalMachineId$
reference: $reference$
timeStamp: $currentUTCTimeStamp$
signalName: $signalName$
value: $value$
unit: $unit$

}

Wildcards can be used to edit event structures, which can pass on different types of information.
This can be used, for example, to convert the machine ID or the time stamp to UTC. Chapter 8.6 lists
and explains all available script functions.
If the Active switch is enabled, the corresponding event will be sent. Events that are not enabled will
not be sent.
An enabled event can also be tested by clicking Test. In the subsequent dialog, values such as
machineId (machine ID) or value can be entered to generate and execute the signal as an example
without influencing the actual asset connection. This allows events to be tested in advance without
having to execute them in the live environment.

EDGE Configuration

Manual - FORCE EDGE CONNECT Page 42/68

6.4.1 Signals and events from EDGE to superordinate system

There are four technical options for supplying signals and events from an EDGE node to a third-party
application.

 The supply can be configured in the EDGE node itself.

HTTPS/REST

To supply the external system, any REST endpoint provided there can be used. The HTTP methods
POST and PUT are supported.
The following standards are implemented as HTTP authentication methods:

‒ Basic Authentification: Authentication according to RFC 2617 by entering the user name and
password (see https://datatracker.ietf.org/doc/html/rfc2617).

‒ Client credential flow: Authentication according to OAuth 2.0 RFC 6749 via client ID and
client secret known to the system. (See https://auth0.com/docs/flows/client-credentials-flow).
This type of authentication is performed without user intervention, i.e., in the background.

Fig. 30: Communication with superordinate systems via HTTPS/REST

https://datatracker.ietf.org/doc/html/rfc2617
https://auth0.com/docs/flows/client-credentials-flow

EDGE Configuration

Manual - FORCE EDGE CONNECT Page 43/68

MQTT messaging

Any MQTT broker be served, if provided by the customer or partner.

Fig. 31: Communication with superordinate systems via MQTT broker

EDGE Configuration

Manual - FORCE EDGE CONNECT Page 44/68

Apache Kafka

The third-party system can be supplied using Apache Kafka, if provided by the customer or partner.

Fig. 32: Communication with superordinate systems via Apache Kafka

EDGE Configuration

Manual - FORCE EDGE CONNECT Page 45/68

OPC UA

FORCAM provides an OPC UA server with “Data Access” functionality. This extension makes various
asset data available via the defined OPC UA interface. The information models are prepared
dynamically based on the existing assets, configured in the EDGE node.
The user can connect to the server via the specified URL to retrieve the desired data. We assume that
the client required for data retrieval already exists.
It is not only possible to retrieve the current values of an event or signal, but also the history. To be
able to process these historical data sets, EDGE CONNECT supports the Historian functionality of
OPC UA (only available if Data Lake is used). The Historian acts as a data logger with SQL databases. It
logs historical data and can additionally be used as a gateway to access real-time data from all
underlying OPC UA servers.
In EDGE CONNECT, the user has the option to assign login credentials. This data must then be
entered correctly when connecting to the server via the client.

Fig. 33: Communication with the OPC UA server

EDGE Configuration

Manual - FORCE EDGE CONNECT Page 46/68

NATS.io

Connection to a NATS infrastructure EDGE CONNECT is also possible for sending northbound-related
information. The NATS interface does not support the reception of information (e.g., business
parameters).

Core NATS as well as NATS JetStream can be used for transmitting events. In both cases, different
subjects and streams can be defined in order to facilitate data distribution.
Placeholders make it possible for the user to freely configure the content of the events to be
transmitted and adapt it to the target system.

Fig. 34: Communication with superordinate systems via NATS.io

EDGE Configuration

Manual - FORCE EDGE CONNECT Page 47/68

6.4.2 Data & documents from superordinate system to EDGE

EDGE CONNECT can be supplied with data and documents via the EDGE API.
The transmission of NC files is technically possible via HTTPS/REST. Writing business parameters and
signal values is also possible via MQTT in addition to HTTPS/REST.
The following interfaces are provided:

Function Description

Transfer of process and
reference parameters

These business parameters can be used in Signal Composition to
supplement standardized events (e.g. order number or cycle
time), among others.

Transfer of signal parameters
Parameter values for specific signals can be transferred. These
are written directly to the asset control.

Transfer of documents NC programs can be transferred to the asset.

Table 1: Interfaces for transferring data and documents

6.4.3 Configuring an event

Before events can be created, first the connection must be determined through which to
communicate with the asset (interface between the asset and the third party system).
Then, depending on the interface, standardized events can be generated.

To determine the connection:

1. Click on the Northbound Configuration icon in the upper right part of the details view of a
configured asset (see Fig.15:).

2. In the subsequent screen, select the tab for the interface you want to use.

‒ REST

‒ MQTT

‒ Apache Kafka

‒ NATS.io

‒ OPC UA
3. Under Connection, click Edit.
4. Enter the connection information in the subsequent dialog.

(See Table 2 for the information that is necessary for each interface.)
5. For REST and Apache Kafka only :

Enable the Check SSL Certificate switch when communicating via a standard security
certificate.

 Deactivate this switch if the connecting is set up without a valid or with an unsigned security
certificate (e.g., with self-defined certificates).

6. Select desired authentication and enter login data.
7. Save.

EDGE Configuration

Manual - FORCE EDGE CONNECT Page 48/68

Interface configuration

Configuration Description

REST

URL* Text field to enter the server URL

Content type Data format of the message content

Number of connections* Number of active, parallel connections to the external system

Timeout (ms)* Limits the time for connection attempts to the server

Check SSL certificate
Automatically checks the SSL certificate
If the certificate was created by the user, the switch should be
disabled.

Authentification
None: No authentication
HTTPS BasicAuth: Authentication via user / password
Auth 2.0 Client credential flow: Authentication via defined standard

MQTT

URL* Text field to enter the server URL

Timeout (ms) Limits the time for connection attempts to the server

Authentication
None: No authentication

Username/Password: Authentication via user credentials

Apache Kafka

Bootstrap Servers* Text field to enter the server URL

Client ID

Check SSL certificate
Automatically checks the SSL certificate
If the certificate was created by the user, the switch should be
disabled.

Security Protocol

Plain Text

SASL Plain Text

SASL SSL

NATS.io

Server URL* Text field to enter the server URL

Timeout (ms)* Limits the time for connection attempts to the server

Reconnect attempt after
(ms)

Time to wait until the next attempt to reconnect to the server

EDGE Configuration

Manual - FORCE EDGE CONNECT Page 49/68

Configuration Description

Self-Signed TLS Certificate
If the server uses a self-signed certificate, this must be uploaded to
enable checks against this certificate.

Server Security

None: No authentication

Username/Password: Authentication via user credentials

JWT/NKey Credentials: Authentication via certificate file

Streaming behavior Core NATS: Sent files are not saved.

OPC UA

Server configuration*

Name and uniform identifier of the OPC UA server.

ⓣ This data must correspond exactly to the information in the
certificate.

Authentification

Login information for connecting to the OPC-UA server:

None: Do not use a user/password to log on to the server.

User credentials: Define user name / password

Security

Configuration of a secure client-server communication:

Security Policy:
You can select one or more security policies that apply for client
communication with the server.

Message Security Mode*:
If at least one security policy is selected, you can specify whether
the messages are only signed (Sign) or also encrypted
(SignAndEncrypt).

Server certificate upload:*
A certificate for the server must always be uploaded.

Client certificate upload:
If a security policy has been selected, the corresponding
communication certificate must be uploaded for each client.

*Mandatory field

Table 2: Northbound interface configuration

To configure an event:

 Depending on the selected interface, certain evens can be configured. The dialog windows
therefore look somewhat different.

1. Under Event, click Edit.

EDGE Configuration

Manual - FORCE EDGE CONNECT Page 50/68

2. Configure the events as desired.
Copy placeholder on the left and paste it into the area on the right.
Or
Write directly into the right area.

 Script language can be switched between JSON, XML or text (see Fig. 34)
3. Activate the event with the Active button.

An active event is indicated by a blue wave icon in the Northbound Configuration overview.
For inactive events, the wave icon is gray and crossed out.

4. Save.

Fig. 35: Changing the script language

6.5 Integration

The following API interfaces are available for EDGE CONNECT:

EDGE Node

EDGE Node API IP-Adresse + 60067/api/management

Data Lake API IP-Adresse + 60067/api/data-lake

EDGE Configuration

EDGE Configuration API IP-Adresse + 60066/api/configuration

Monitoring API IP-Adresse + 60066/api/monitoring

Literals IP-Adresse + 60066/api/literals

Authentication in Swagger

Authentication for EDGE Node API and Data Lake API:
1. Make the following entries under Basic Authentication (http, Basic):

‒ Username: usertest@mail.com

mailto:usertest@mail.com

EDGE Configuration

Manual - FORCE EDGE CONNECT Page 51/68

‒ Password: secret (API key is assigned during installation)
2. Click Authorize.

Authentication for EDGE Configuration:

1. Under Basic Authentication (http, Basic) enter the user name and password of the
respective user.

2. Click Authorize.

Monitoring

Manual - FORCE EDGE CONNECT Page 52/68

7 Monitoring

EDGE CONNECT provides the option to monitor the individual software components via the
Monitoring page. The page indicates whether a component is running without errors or if there are
any malfunctions. The monitoring can be called up via the Monitoring icon in the upper right area in
the asset overview (see Fig.15:).

Fig. 34: Monitoring in EDGE CONNECT

Monitoring

Manual - FORCE EDGE CONNECT Page 53/68

Error messages and logs can be retrieved specifically for each component.

Figure 34: Component "EDGE-DNC" in the monitoring page

(1) Current status of the component
(2) Error indication via message:

Clicking More... displays the full error message in a pop-up window.
(3) Displays the last warning and error message of the component for each case
(4) Enables downloading the log file for a specific day
(5) Setting the log-level

Log level

Log level Description

Trace
All information from the system is stored in the log file.

⚠ Generates very large amounts of data.

Debug
Log file stores additional information from the system in addition
to regular information (see Log level: Info)

Info
Log file contains information about the status of the asset,
connection information, etc.

Warning Only warnings are stored in the log file

Error Only error messages are stored in the log file

Annex

Manual - FORCE EDGE CONNECT Page 54/68

8 Annex

8.1 Document conventions

Conventions Description

Bold type Buttons and options names are written in bold type.

Italics Highlighted words are in italics.

Icons
For a function that is represented by an icon, the icon is referenced as
the object.

Action result Action results are indicated by ➔.

Prerequisites Prerequisites are indicated by ✓.

Warnings Warnings are indicated by .

Notes Notes are indicated by .

Tips Tips are indicated by .

Table 3: Fonts, formatting and characters used

8.2 Abbreviations and terms used

Abbreviation Description

Apache Kafka
Apache Kafka is a distributed messaging system that uses the publish-subscribe
method.

Asset
Generic term for all objects that EDGE CONNECT can connect (e.g., machines,
sensors, databases or IT systems).

Brownfield
An existing factory or manufacturing facility that was already been built and has
been in operation for some time. The Brownfield approach in the context of
Industry 4.0 means the digital transformation of an existing manufacturing plant.

CP Communication Processor

DB Database

DNC
Distributed Numerical Control: NC systems that are connected to a computer. The
individual systems can be centrally supplied with NC programs and then
coordinated.

IT Information technology

Machine
In EDGE CONNECT, a machine is a plant unit according to ISA 95 standard. If there
are no further plant units (i.e., not additional physical controllers), it is referred to
as a plant.

Annex

Manual - FORCE EDGE CONNECT Page 55/68

Abbreviation Description

MDC Machine Data Connection

MQTT
Message Queuing Telemetry Transport: Open network protocol for machine-to-
machine (M2M) communication that enables transmitting telemetry data in the
form of messages between devices, despite high delays or network limitations.

MR Machine Repository

NATS.io
A connectivity system that uses the publish-subscribe method. There are different
options to implement the messaging.

Northbound
A northbound interface communicates with a higher-level element in a particular
network component.

OPC UA
Open Platform Communications Unified Architecture: platform independent
service-oriented architecture that constitutes a standard for exchanging data.

OT
Operative technology - refers to hardware and software that monitors and controls the

performance of physical devices.

Plug-in FORCAM uses plug-ins as simplified connections to controllers.

POST
POST is a method which is supported by HTTP and means that a web server
accepts the data contained in the body of the message requested.

PUT
The PUT method is used to update a resource available on the server. Typically, it
replaces anything that exists at the target URL with something else.

REST
Representational State Transfer: Programming paradigm for distributed systems
(collection of independent computers that present themselves to the user as a
single system)

RESTful API
API for data exchange based on HTTP requests via GET, PUT, POST and DELETE,
which is subject to the requirements or restrictions of the REST architecture.

Signal
Values read from the machine controller, such as temperature, pressure or
certain statuses.

Southbound
Acting as the equivalent to the Northbound interface, a Southbound interface
communicates with lower-level components.

SPS Programmable Logical Control

TLS

Transport Layer Security
Encryption protocol for the transport layer of the Internet. The data streams
between client and server are encrypted.
TLS is the successor protocol to SSL.

UDP
User Datagram Protocol - minimal, connectionless network protocolthat belongs
to the transport layer of the Internet protocol family . UDP enables applications to
send datagrams in IP-based computer networks.

UTC Coordinated Universal Time

Wildcard Placeholder for other characters

Table 4: Abbreviations and terms used

https://de.wikipedia.org/wiki/Netzwerkprotokoll
https://de.wikipedia.org/wiki/Internetprotokollfamilie
https://de.wikipedia.org/wiki/Anwendungssoftware
https://de.wikipedia.org/wiki/Datagramm
https://de.wikipedia.org/wiki/Internet_Protocol
https://de.wikipedia.org/wiki/Rechnernetz

Annex

Manual - FORCE EDGE CONNECT Page 56/68

8.3 List of supported plug-ins

MDC Plug-ins

MDC plug-in Read Write Transmission:

Polling/Event-based

CSV File Reader X X/

Database Exchange X X/

Euromap 63 X X/

FANUC X X X/

FORCAM I/O Controller X X /X

Heidenhain X X X/

MAKINO Pro 3/Pro 6 X X/

MAZAK Mazatol Fusion M640M X X /X

MAZAK Mazatol Fusion M640MTPro X X /X

MAZAK Mazatol Matrix X X /X

MAZAK Mazatol Smart X X /X

MAZAK Mazatol Smooth X X /X

Mitsubishi X X/

Modbus X X/

MQTT X X* /X

MT Connect X X/

Node-RED X X /X

Okuma X X/

Omron CS/CJ X X X/

Omron CV X X X/

OPC DA X X X/

OPC XML-DA X X/

Annex

Manual - FORCE EDGE CONNECT Page 57/68

* - Writes only to the related queue. No verification of writing to the asset.

DNC Plug-ins

MDC plug-in Read Write Transmission:

Polling/Event-based

OPC UA X X /X

Rockwell / Allen Bradley X X X/

Schneider Electric iEM3000

Schneider Electric Pm3000/Pm5000

Schneider Electric Power Tag Energy F160 and
Rope

Schneider Electric Power Tag Energy
M250/M630

Schneider Electric Power Tag Energy X63

X X/

Siemens S5 X X/

Siemens S7 (200, 300, 400, 1200, 1500) X X X/

Siemens LOGO! X X/

WAGO 750 X X/

Weihenstephan X X/

Wiesemann & Theis (WUT) X X/

DNC plug-in Read Write

COM X X

External program file transfer X X

FANUC X X

FileHandler X X

FileHandlerServer X X

File system copy X X

File system FTP X X

Heidenhain X X

Annex

Manual - FORCE EDGE CONNECT Page 58/68

DNC plug-in Read Write

MAZAK X X

Mitsubishi X X

MOXA X X

Wiesemann & Theis (WUT) X X

Annex

Manual - FORCE EDGE CONNECT Page 59/68

8.4 Standardized events

Event type Values Function

General

Information

‒ Machine ID

‒ Machine Name

‒ Exernal Machine ID

‒ Reference (any)

‒ Timestamp:

‒ Type (any)

‒ Value (any)

Any information

Impulse

‒ Machine ID

‒ Machine name

‒ Exernal machine ID

‒ Reference (any)

‒ Timestamp:

‒ Count

E.g., stroke, shot

Quantity

‒ Machine ID

‒ Machine name

‒ Exernal machine ID

‒ Reference (any)

‒ Timestamp:

‒ Amount

‒ Unit (optional)

‒ QualityDetail (optional)

Produced quantity

Signal
package

‒ Machine ID

‒ Machine name

‒ Exernal machine ID

‒ Reference (any)

‒ Timestamp:

‒ ARRAY [SignalName, Value,
TimeStampUTC, Unit (optional)]

Collection of signals (e.g., serial number,
pressure and temperature)

Signal value

‒ Machine ID

‒ Machine name

‒ Exernal machine ID

‒ Reference (any)

‒ Timestamp:

‒ SignalName:

‒ Value

‒ Unit (optional)

Temperature, pressure, etc.

State

‒ Machine ID

‒ Machine name

‒ Exernal machine ID

State (production or downtime)

Annex

Manual - FORCE EDGE CONNECT Page 60/68

Event type Values Function

‒ Reference (any)

‒ Timestamp:

‒ State (Production or Downtime)

‒ StatusCodes (optional list of statuses)

Table 5: Events and their function in EDGE CONNECT

8.5 Script examples

8.5.1 Asset status and temperature

The following script sends the status of the asset (production or stoppage). In addition, the
temperature is also indicated. As soon as the temperature changes, the updated temperature is sent.

var_local

begin

oldState: boolean;
oldTemperature: string;

end;

oncepersecond
begin

if(oldState!= @|PLC|@:DONE) then
begin

oldState := @|PLC|@:DONE;
if @|PLC|@:DONE then
begin

sendStateProduction()
end
else
begin

sendStateStoppage();
end;

end;

if(oldTemperature != toString(@|PLC|@:TEMP)) then
begin

oldTemperature := toString(@|PLC|@:TEMP);
sendSignalValue("TEMPERATURE", toString(@|PLC|@:TEMP), "Degrees");

end;

end;

8.5.2 Temperature and humidity

The following script sends the current temperature and humidity. This occurs in intervals of 30
seconds, and as soon as a change of these values takes place.

var_local
begin

oldTemperature : string;
oldHumidity : string;
seconds: number;

end;

oncepersecond
begin

Annex

Manual - FORCE EDGE CONNECT Page 61/68

seconds := seconds + 1;

if (seconds > 30) then
begin

seconds := 0;
oldTemperature := "";
oldHumidity := "";

end;

if (oldTemperature != @|PLC|@:TEMP) then
begin

oldTemperature := @|PLC|@:TEMP;
sendSignalValue("TEMP", toString(@|PLC|@:TEMP), "Degree");

end;

if (oldHumidity != @|PLC|@:HUMIDITY) then
begin

oldHumidity := @|PLC|@:HUMIDITY;
sendSignalValue("HUMIDITY", toString(@|PLC|@:HUMIDITY), "Degree");

end;
end;

8.5.3 Crane control

This script collects data from a crane control with a black, a green and a red button.

‒ The black button turns the machine on and off.

‒ The red button triggers an emergency.

‒ The green button sends a pulse for piece counts and then counts this number up.

var_local
begin

// GENERAL LOGIC VARIABLES
seconds: number;
// MACHINE STATE
state: number;
stateOld: number;
// MACHINE STATUS REASON
status_reason: string;
status_reasonOld: string;
// PIECE COUNT VARIABLES
counter: number;
counterOld: number;
counterSend: number;

end;

begin

//DEFINE LISTS START
ListNew("STATUSCODES", "S");
//DEFINE LISTS END

end;

begin

// INITIALIZE SCRIPT VARIABLES START
if not initialized and not offline(@|PLC|@) then
begin

status_reason := " ";
status_reasonOld := " ";
counter := @|PLC|@:Good_count;
counterOld:= counter;
ListClear("STATUSCODES");
// Set initialized to perform initializing once
initialized := true;

end
 else if initialized then
 begin
 counter := @|PLC|@:Good_count;
 ListClear("STATUSCODES");

end;
// INITIALIZE SCRIPT VARIABLES END

Annex

Manual - FORCE EDGE CONNECT Page 62/68

// ACTIONS ONCE PER SECOND START

 oncePerSecond
 begin

seconds := seconds + 1;
end;
// ACTIONS ONCE PER SECOND END

// DEFINITION STATE / STATUS_REASON START
if offline(@|PLC|@) then

 begin
state := "1";
status_reason :='NOT_CONNECTED';
seconds := 0;

end
else if not @|PLC|@:Emergency_ON then
begin

state := "1";
status_reason :='EMERGENCY_ON';
seconds := 0;

end
else if not @|PLC|@:Machine_ON then
begin

state := "2";
status_reason := 'PRODUCTION'
seconds := 0;

end
else
begin

if seconds > karenzZeit then
begin

state := "1";
status_reason := 'UNDEFINED_STOPPAGE'
seconds := 0;

end
end;
// DEFINITION state END

// DEFINITION COUNTER START
if counter >= counterOld then // Part counter on PLC is incremented
begin

counterSend := counter - counterOld;
counterOld := counter;

end
else if counter < counterOld then // Part counter on PLC changes to negative
begin

counterSend := 32768 - counterOld;
counterOld := counter;

end;
// DEFINITION COUNTER END

// SEND state status_reason START
if state <> stateOld or status_reason <> status_reasonOld then
begin

if state == 2 then
begin

ListAdd("STATUSCODES", status_reason);
sendStateProduction("STATUSCODES");

end
else
begin

if == 1 then
begin

 ListAdd("STATUSCODES", status_reason);
 sendStateStoppage("STATUSCODES");

end
end;
debugOut("@|PLC|@" + "Send state: " + state);
stateOld := state;

 status_reasonOld := status_reason;
end;
// SEND state status_reason END

Annex

Manual - FORCE EDGE CONNECT Page 63/68

// SEND STROKES / QUANTITY START
if counterSend > 0 and packetNo <> packetNoOld then
begin

debugOut("@|PLC|@" + "Send quantity: " + toString(counterSend));
SendQuantity(counterSend);
counterSend := 0;

end;
// SEND STROKES / QUANTITY END

// LOGGING SIGNALS WHEN CHANGED START
logstring := "@|PLC|@ Signals: " + " offline: " + toString(offline(@|PLC|@))
 + " State: " + toString(state)
 + " Status Reason: " + toString(status_reason)
 + " Machine_ON: " + tostring(@|PLC|@:Machine_ON)
 + " Emergency_ON: " + tostring(@|PLC|@:Emergency_ON)
 + " COUNTER: " + tostring(@|PLC|@:Good_count)
 + " seconds: " + toString(seconds);

if logString <> logstringOld then
begin

debugOut(logString);
logstringOld := logString;

end;
// LOGGING SIGNALS WHEN CHANGED END

end;

8.5.4 Signal package

The following script is an example of signal packages:

//
// Task: Send machine state / status_reason / quantities to runtime
// Created: 2021-05-12
// Version: 1.0
// Author: FORCAM MDC
//
// --
//
// Incoming signals
// Reg1 = holding register 1
//
//
// Outgoing information
// //state = machine state
// //STATUSCODES = Status reason
// Reg1SEND = just display holding register
////--

// VARIABLES
var_local
begin
// GENERAL VARIABLES
 seconds: number;
 logstring: string;
 logstringOld: string;
// SIGNAL VARIABLES
 H1Old: number;
 H2Old: number;
 H3Old: number;
 H4Old: number;
 H5Old: number;
 H6Old: number;
 H7Old: number;
 H8Old: number;
 H9Old: number;
 H10Old: number;
 // SCRIPT INIZIALIZING VARIABLES
 initialized: boolean;
end;

Annex

Manual - FORCE EDGE CONNECT Page 64/68

begin
 if not initialized and not offline(@|PLC|@) then
 begin
 //DEFINE LISTS START (S=strin B=boolean N=number)
 ListNew("Signals", "S");
 ListNew("Values", "S");
// ListNew("Timestamps", "S");
 //DEFINE LISTS END
 end;

// INITIALIZE SCRIPT & VARIABLES START
 if not initialized and not offline(@|PLC|@) then
 begin
 H1Old := 0;
 H2Old := 0;
 H3Old := 0;
 H4Old := 0;
 H5Old := 0;
 H6Old := 0;
 H7Old := 0;
 H8Old := 0;
 H9Old := 0;
 H10Old := 0;
 ListClear("Signals");
 ListClear("Values");
 // ListClear("Timestamps");
// set initialized to perform initializing once
 initialized := true;
 end
 else if initialized then

// ACTIONS ONCE PER SECOND START
 oncePerSecond
 begin
 seconds:= seconds + 1;

// ACTIONS ONCE PER SECOND END
// send one package for all 10 holding registers for now always
// Reg1Content Start
 if(H1Old <> @|PLC|@:H1) then
 begin

 //fill lists
 H1Old := @|PLC|@:H1;
 ListAdd("Signals", "H1");
 ListAdd("Values", toString(@|PLC|@:H1));
 H2Old := @|PLC|@:H2;
 ListAdd("Signals", "H2");
 ListAdd("Values", toString(@|PLC|@:H2));
 H3Old := @|PLC|@:H3;
 ListAdd("Signals", "H3");
 ListAdd("Values", toString(@|PLC|@:H3));
 H4Old := @|PLC|@:H4;
 ListAdd("Signals", "H4");
 ListAdd("Values", toString(@|PLC|@:H4));
 // H5Old := @|PLC|@:H5;
 // ListAdd("Signals", "H5");
 // ListAdd("Values", toString(@|PLC|@:H5));
 // H6Old := @|PLC|@:Reg6;
 // ListAdd("Signals", "H6");
 // ListAdd("Values", toString(@|PLC|@:H6));
 // H7Old := @|PLC|@:H7;
 // ListAdd("Signals", "H7");
 // ListAdd("Values", toString(@|PLC|@:H7));
 // H8Old := @|PLC|@:H8;
 // ListAdd("Signals", "H8");
 // ListAdd("Values", toString(@|PLC|@:Reg8));
 // H9Old := @|PLC|@:H9;
 // ListAdd("Signals", "H9");
 // ListAdd("Values", toString(@|PLC|@:Reg9));
 // H10Old := @|PLC|@:H10;
 // ListAdd("Signals", "H10");
 // ListAdd("Values", toString(@|PLC|@:H10));

Annex

Manual - FORCE EDGE CONNECT Page 65/68

// sendSignalValue("HoldingReg1", toString(@|PLC|@:H1));
 // sendSignalValue("HoldingReg2", toString(@|PLC|@:H2));
 // sendSignalValue("HoldingReg3", toString(@|PLC|@:H3));
// sendSignalValue("HoldingReg4", toString(@|PLC|@:H4));
 // sendSignalValue("HoldingReg10", toString(@|PLC|@:H10));
// send Signal Package with lists
 SendSignalPackage("Signals", "Values")
 //initialize list
 begin
 ListClear("Signals");
 ListClear("Values");
 end;

// SENDING Holding Register END

// LOGGING SIGNALS WHEN CHANGED START
 logstring := "@|PLC|@ Signals: "
 + " Reg 1: " + tostring(@|PLC|@:H1)
 + " Reg 2: " + tostring(@|PLC|@:H2)
 + " Reg 3: " + tostring(@|PLC|@:H3)
 + " Reg 4: " + tostring(@|PLC|@:H4)
 // + " Reg 5: " + tostring(@|PLC|@:H5)
 // + " Reg 6: " + tostring(@|PLC|@:H6)
 // + " Reg 7: " + tostring(@|PLC|@:H7)
 // + " Reg 8: " + tostring(@|PLC|@:H8)
 // + " Reg 9: " + tostring(@|PLC|@:H9)
 // + " Reg 10: " + tostring(@|PLC|@:H10)
 ;
 if logString <> logstringOld then
 begin
 debugOut(logString);
 logstringOld := logString;
 end;
// LOGGING SIGNALS WHEN CHANGED END
end;
end;
end;

Annex

Manual - FORCE EDGE CONNECT Page 66/68

8.6 Script functions

Usage Script function

Parameters in [...] are optional

Description Output
event

Default
SendImpulse(ImpulseCount,
[Reference])

Sends impulses. Impulses.

Default
SendQuantity(Quantity, [Unit],
[QualityDetail], [Reference])

Sends a quantity. Quantity

Custom
SendState(State,
[StatusCodesListName],
[Reference])

Sends a status. State

Default
SendStateProduction([StatusCod
esListName], [Reference])

Sends the productions status. State

Default
SendStateStoppage([StatusCodes
ListName], [Reference])

Sends the stop state. State

Default
SendSignalValue(SignalName,
Value, [Unit], [Reference],
[CustomerSpecificSetting],
[Timestamp])

Sends the value of a signal. Data
type "Long" (L) must be used for the
timestamp list.

SignalValue

Default
SendSignalPackage(SignalNamesL
istName,
ValuesListName, [UnitsListName]
, [Reference],
[CustomerSpecificSetting],
[TimestampsListName])

Sends signal values as a package.
Data type "Long" (L) must be used
for the timestamp list.

SignalPacka
ge

Custom
SendGenericInformation(ParamN
ame, ParamValue, [Reference])

Sends generic information.
GenericInfo
rmation

Helper

ListNew(ListName, DataType)

Creates a new list with the name
ListName and list elements of the
data type DataType (S for string, B
for boolean, N for number).

-

Helper ListAdd(ListName, Value) Adds an element to the list. -

Helper ListClear(ListName) Empties the list. -

Helper ListDelete(ListName) Deletes the list. -

Helper GetMachineStatus() Indicates the asset status. -

Helper
GetMachineData(ParameterNam
e)

Indicates asset data for the specified
parameter.

-

Helper
SetParameter(ParameterName,
ParameterValue)

Sets a new value for the specified
parameter.

-

Helper GetParameter(ParameterName)
Fetches the value for the specified
parameter.

-

Helper
DeleteParameter(ParameterNam
e)

Deletes the parameter. -

Annex

Manual - FORCE EDGE CONNECT Page 67/68

Usage Script function

Parameters in [...] are optional

Description Output
event

Helper DeleteAllParameters() Deletes all parameters. -

Helper OFFLINE
Indicator whether the controller is
offline or not.

-

Helper IPADDRESS The IP address of the Composition. -

Helper HOSTNAME Host name of the Composition. -

Helper SQRT(args) Root function MATH. -

Helper SIN(args) Sine function MATH. -

Helper COS(args) Cosine function MATH. -

Helper TAN(args) Tangent function MATH. -

Helper

RISINGEDGE(args)

At the beginning the variable is
FALSE, the EDGE checks if the values
have changed. If this is the case, the
variable is corrected to TRUE.

-

Helper

FALLINGEDGE(args)

At the beginning the variable is
TRUE, the EDGE checks if the values
have changed. If this is the case, the
variable is corrected to FALSE.

-

Helper
SUBSTRING(str, startIndex[,
endIndex])

Substring of the specified string. -

Helper TONUMBER(str)
String to number (double), replaces
comma to period in string.

-

Helper

TOSTRING(str or number[,
formatSpecifier])

Specifies the format of the form
width. The default formatting is used
for empty strings. Width is the
minimum length of the result string.
Precision is the number of decimal
places. If not specified, 0 is used. If
the format specification starts with
0, the result string is prefixed with
filled zeros. If the format
specification ends with X, the
number is converted to
hexadecimal, using upper or lower
case letters with upper or lower case
x. In this case, the decimal places are
always cut off.

-

Helper LENGTH(obj)
The length of an object as a string
value.

-

Annex

Manual - FORCE EDGE CONNECT Page 68/68

Usage Script function

Parameters in [...] are optional

Description Output
event

Helper

FORMATTIME(timeformatStr,
timeOffset, [, timeunit])

Formats the current time with the
time unit as one of the following:
MILLISECOND
SECOND
MINUTE
HOUR
DAY
MONTH
YEAR
MSABSOLUTE (current time)

"R" at Format is specified as a
number in milliseconds, otherwise
the format is used and the offset
and time unit are used to calculate
the time.

-

Helper

STDLOG(ignored, logLevel,
suffixNumber, logText)

The first parameter is ignored. The
log level should be W = warning, C or
F = error and everything else for the
debug level. The suffix number, if
not 0, is added to the end of the log
text as "(<SuffixNumber>)" with
script loggers.

-

Helper DEBUGOUT(text)
Logs the text at debug log level with
parser logger.

-

Helper

COPYFILE(inFile, outFile)

Copies data from in-file to out-file.
Arguments can be file paths. If
successful, the last modified out-file
is also updated as in-file.

-

Helper
COPYREPLACE(inFile, outFile,
searchStr, replaceStr)

Copies from in-file to out-file as with
function COPYFILE, replacing all
incidences of search-string with
replace-string.

-

Helper
ATTIME(seconds, obj)

Calculates the object every day at
specified times in the time format
(hours: minutes: seconds)

-

Helper FROMASCII(num)
Returns a string that has the
numeric value specified as num.

-

Helper SLEEP(ms)
Pauses the current thread for a
specified time in milliseconds (ms).

-

	1 About this document
	2 Concept
	3 System components
	3.1 EDGE Node
	3.1.1 Southbound Link
	3.1.2 Signal Composition
	3.1.3 Northbound Link
	3.1.4 Data Lake

	3.2 EDGE Configuration
	3.3 Machine Repository
	3.4 System architecture

	4 Deployment
	5 Basic settings
	5.1 User management
	5.1.1 Roles and permissions

	5.2 External master data
	5.3 Licensing
	5.4 Download Area
	5.5 Monitoring the EDGE Configuration
	5.6 Table Sorting

	6 EDGE Configuration
	6.1 Add EDGE node
	6.2 Edit the Data Lake of a node
	6.3 Add asset
	6.3.1 ① Template
	6.3.2 ② Basic information
	6.3.3 ③ Additional information
	6.3.4 ④ MDC-configuration
	6.3.5 ⑤ Signal
	6.3.6 ⑥ Composition
	6.3.7 ⑦ DNC Configuration
	6.3.8 ⑧ Overview

	6.4 Northbound Configuration
	6.4.1 Signals and events from EDGE to superordinate system
	6.4.2 Data & documents from superordinate system to EDGE
	6.4.3 Configuring an event

	6.5 Integration

	7 Monitoring
	8 Annex
	8.1 Document conventions
	8.2 Abbreviations and terms used
	8.3 List of supported plug-ins
	8.4 Standardized events
	8.5 Script examples
	8.5.1 Asset status and temperature
	8.5.2 Temperature and humidity
	8.5.3 Crane control
	8.5.4 Signal package

	8.6 Script functions

