

Document: Graphical Composition - Getting Started
with Signal Composition

 Release date: 01.06.2023

 Document version: 2.0

 Author: FORCAM GmbH

Graphical Composition
Getting Started with Signal Composition
Version: 230406

Manual

Contents

Manual - Graphical Composition Page: 2/78

Contents

1 About this document .. 5

1.1 Target group .. 5

2 Concept .. 6

2.1 FORCE EDGE CONNECT & Graphical Composition .. 6

2.2 Customer benefits of the Graphical Composition .. 7

3 From machine signals to events .. 8

3.1 Procedure of signal interpretation .. 8

3.2 Important basic information ... 9

3.2.1 General explanation of the user interface.. 9

3.2.2 Function categories .. 11

3.2.3 Notation of numbers .. 13

3.3 General handling .. 13

3.3.1 Layout of the blocks .. 16

3.3.2 Shadow blocks .. 18

3.4 Error detection ... 19

4 Variables ...20

4.1 Get [Variable]... 22

4.2 Set [Variable] to ... 23

5 Signals ...24

5.1 Set [Signal] to ... 25

5.2 Get Signal ... 26

5.3 Get base / scaled value for ... 27

6 Events ..28

6.1 SendImpulse .. 28

6.2 SendQuantity ... 29

6.3 SendState... 30

6.4 SendSignalValue ... 31

6.5 SendSignalPackage ... 32

6.6 SendGenericInformation .. 33

6.7 SendState [Selection] ... 34

7 Logical ...36

Contents

Manual - Graphical Composition Page: 3/78

7.1 If-do ... 36

7.2 Mathematical comparison: =/≠/</>/≤/≥ ... 37

7.3 Logical connective: and/or ... 38

7.4 Logical connective: equal/not equal ... 39

7.5 Rising/Falling edge ... 40

7.6 “Not” statement .. 41

7.7 True statement .. 42

8 Repeaters ..44

8.1 Once per .. 44

9 Arithmetic ...45

9.1 Number field .. 45

9.2 Mathematical operation ... 45

9.3 ToNumber .. 46

10 Logging ..47

10.1 Logging .. 47

11 Text ...48

11.1 String ... 48

11.2 Append String .. 48

11.3 ToString ... 49

11.4 Length .. 50

11.5 SplitString .. 50

11.6 FromAscii ... 51

11.7 Substring .. 52

12 Lists ...54

12.1 ListNew .. 54

12.2 ListAdd ... 55

12.3 ListClear ... 56

12.4 ListDelete ... 57

12.5 GetList ... 58

13 Date and time ..59

13.1 FormatTime ... 60

13.2 AtTime Do .. 61

13.3 Sleep .. 62

Contents

Manual - Graphical Composition Page: 4/78

13.4 ConvertToTimeStamp ... 63

13.5 CurrentSystemTimestamp .. 64

14 Misc ...65

14.1 HttpPost .. 65

14.2 Get [specific] Data .. 66

14.3 GetMachineStatus .. 67

14.4 Offline .. 67

14.5 IpAddress ... 68

14.6 HostName .. 69

15 Business Parameters ..70

15.1 SetParameter ... 70

15.2 GetParameter .. 71

15.3 DeleteParameter .. 71

15.4 DeleteAllParameter .. 72

16 Glossary ...73

17 Annex ..74

17.1 Parameter overview ... 74

17.2 Ascii table .. 77

About this document

Manual - Graphical Composition Page: 5/78

1 About this document

This document describes how to use the editor for easy interpretation of asset signals.

 For better readability, we generally use the generic masculine in the text. These formulations,
however, are equally inclusive of all genders and intended to address all persons equally.

1.1 Target group

The manual requires knowledge in the use of FORCE EDGE CONNECT (hereafter simply referred to as
EDGE CONNECT), If you do not have any knowledge in this area, take the time to familiarize yourself
with the basics.

See the Manual - FORCE EDGE CONNECT for detailed information. (As of version 230406.)

 We recommend that you use our Academy: https://forcam.com/academie/
The FORCAM Academy provides the knowledge to effectively use the methods for digital
transformation and the technologies for the Smart Factory.
Based on lean manufacturing and TPM methods, our institute team will guide you to initiate
changes in the company and to use the technologies correctly.

https://forcam.com/academie/

Concept

Manual - Graphical Composition Page: 6/78

2 Concept

To be able to evaluate the signals that have been read from a machine, sensor, etc. (called assets),
these signals must first be interpreted. Without any programming knowledge, you can use Graphical
Composition to define quickly and easily, which signals should be processed in which way. You can
also determine, when data is to be sent to an MES, ERP or another third-party system.
For users that are new to the subject of signal interpretation, the way it was previously done in EDGE
CONNECT sometimes turned out to be quite complex and confusing. The Graphical Composition
offers an easy-to-use alternative to that. With the graphical editor, we aim to provide a beginner-
friendly solution that enables any user to create and use common machine instructions. This enables
any user to send and interpret the data.
This manual describes in detail the various functions and options according to topics and also
provides practical examples.

2.1 FORCE EDGE CONNECT & Graphical Composition

Machine parks are often made of up of many different machines from various manufacturers and of
different ages. This variety leads to a number of different signal formats and machine outputs,
making the interpretation of this data a complex task. EDGE CONNECT, however, standardizes the
raw signals so that they become comparable and thus provide an optimal basis for subsequent
analysis. The interpretation of the asset data in an essential part of this process. This is done by the
Signal Composition component. Here, data received from the Southbound Link can be used to
interpret and process the signals. It is also possible here to specify the time at which the data should
be sent. These data packages are sent only via the Northbound Link. This way, EDGE CONNECT can be
used to supply third-party systems with production data.

Fig. 1: FORCE EDGE CONNECT architecture overview

Concept

Manual - Graphical Composition Page: 7/78

2.2 Customer benefits of the Graphical Composition

The essential benefit of the Graphical Composition is the approach to make the interpretation of
asset signals as easy as possible even for beginners. The selected commands are visualized in a
graphical way with the help of colored puzzle pieces. This way, beginners in programming can
implement basic commands easily, even without prior knowledge of the subject. Knowledge in a
programming language is not required. Syntax errors can be excluded. Different mechanisms make it
easier to recognize other types of errors. Clearly arranged functions facilitate the handling of the
editor. Templates, for example from the Machine Repository, can also be used together with the
Graphical Composition.

From machine signals to events

Manual - Graphical Composition Page: 8/78

3 From machine signals to events

The Graphical Composition provides an alternative to the classic script-based Composition in the
EDGE CONNECT Asset Wizard. A script is a short sequence of commands that are executed by the
desired program. The Composition assigns a meaning to a signal. For example, a pure numerical
value (such as 0 or 1) is turned into a readable and understandable information, for example
“Production” or “Stoppage”. The Graphical Composition editor is used like a building block system to
make these assignments.

Fig. 2: Script-based vs. graphical editor

3.1 Procedure of signal interpretation

Fig. 3: Configuration Wizard

Multiple subsequent steps must be followed to interpret a signal:
Create the asset
First, the required information on the asset (machine or sensor) must be entered. This is done in steps
2 to 5 of the Configuration Wizard. New signals can be created in addition to the automatically created
signals. This is done in step 5.
Prepare collectors
In step 6 Composition, variables are created at first. To be able to analyze these variables, they must
be assigned a meaning.
Interpret signals
Signals are evaluated according to specified conditions. Depending on the condition that is used,
events (incidents or actions) are executed.
Send events
In the Compositions, signals are sent to third-party systems by means of events.
Record signals
All signals can be documented.

From machine signals to events

Manual - Graphical Composition Page: 9/78

3.2 Important basic information

3.2.1 General explanation of the user interface

Fig. 4: Graphical editor

The conditions for the interpretation of signals are specified in step 6 Composition of the
Configuration Wizard. They are displayed in two ways: One way is the display as graphical blocks in
the graphical editor (under GRAPHICS). These are the programming blocks that can be assembled.
The other option is to use the script editor (SKRIPT tab) for text-based coding.

The editor in the GRAPHIC tab (see Fig. 4) consists of the following elements:

(1) Selection window with function categories and blocks
(2) Editing area for assembling the blocks
(3) Navigation: Center
(4) Navigation: zoom in/out the view

Beginners are likely to work with this editor and the graphical blocks.

From machine signals to events

Manual - Graphical Composition Page: 10/78

Fig. 5: Script editor

On the script tab, more advanced users can read the programming code that matches the block
assembly. The displayed data is automatically synchronized.

⚠ It is not possible to edit a structure in SCRIPT and GRAPHIC simultaneously.
If the graphic was converted to a script, the script can be edited in the SCRIPT area but it cannot
be reset to the block variant.

Only users that are familiar with programming should work in the SCRIPT editor.

The left area (1) shows the signals that were added in step 5 of the Configuration Wizard. The right
area (2) displays the current script. The arrows (3) are used to enlarge this area. The script can be
validated, i.e., checked for validation errors using the icon marked with (4).

From machine signals to events

Manual - Graphical Composition Page: 11/78

3.2.2 Function categories

Fig. 6: Categories of blocks

The composition functions are divided into the following categories, which combine specific topics:
Variables, Signals, Events, Logical, Repeaters, Arithmetic, Logging, Text, Lists, Date and time, Misc and
Business Parameters. Each category has a color assigned. All blocks of a category have the same
color. This way, it is easy to distinguish the individual blocks. The naming is in English. The following
sections provides a short overview of the different categories:

(1) Variables
Variables are like collectors to save the data. They are used to safely store elements (usually
entries or calculation results). These collectors can be of specific types. The individual types
have specific restrictions regarding their content (numerals, words., etc.) and their size (how
small/large, etc.). These can contain either static values (asset name, status, etc.) or
calculations (temperature, pressure, time units, etc.).
Changes in the variable are registered in the system. All blocks of this variable adopt the new
value.
There are three types of variables and there are restrictions in combining these types during
assembly: The following types of variables are available:

➔ Boolean:
A boolean is a TRUE/FALSE value. A boolean either indicates that an event is True (1)
or False (0). Or it indicates whether the event has occurred (True/1) or not (False/0).
These values are also called boolean values.
Ex: The maximum value of a temperature was reached or a time period was
exceeded.

➔ String:
A string consists of an number of characters. Caracters can be numbers, letters or
symbols. Strings are automatically placed in quotation marks.
Ex: identification number, asset name

➔ Number:
Numbers have numerical values.
Ex: temperature in °C, number of minutes

From machine signals to events

Manual - Graphical Composition Page: 12/78

(2) Signals
Signals are functions that are usually measured using sensors and which carry information. In
the production environment, typical signals are intervals, temperatures, machine states and
pressures.

(3) Events
So-called event blocks are used to send impulses, production states or values.

(4) Logical
This category is used to relate values to each other. This enables decisions about their logical
value or status.
Predefined rules decide about potential actions resulting from the value.
E.g., Events, Lists, Date and time, Business Parameters, Logging and many others.

(5) Repeaters
In many cases, actions are repeated in regular intervals. Repeaters trigger an action in the
predefined interval.

(6) Arithmetic
These blocks implement calculation functions such as adding, substracting or multiplying
values. They also convert strings into numbers.

(7) Logging
Specific values can be logged and made available for analysis (debug out). Different warning
levels are applied for this.

(8) Text
The graphical/modular composition also needs words and sentences to make the values
understandable. This category can be used to create and count texts.

(9) Lists
Usually, a list is used to collect different production states. This category defines how to
create, fill, empty and delete lists.

(10) Date and time
Date and time must be defined in order to trigger an action at a specific point in time. The
current time of an event and pauses are also stored.

(11) Misc
The category is a collection of additional commands and creates the connection to other
systems. These include: integrating data from the Internet, retrieving the asset status,
defining an asset as offline or outputting the IP address and host name

(12) Business Parameters
Business parameters are characteristics of a machine. This includes, for example, Description,
Manufacturer, Model Number, Serial Number, Inventory Number and Location. The
parameters are created in previous configuration steps.

From machine signals to events

Manual - Graphical Composition Page: 13/78

3.2.3 Notation of numbers

⚠ The Graphical Composition uses the English notation for numbers. This changes the use of point
and coma. Table 1 contains some examples to illustrate this.

Table 1: Notation of the numbers

German In Words English

0,5 A half 0.5

1.000 One thousand 1,000

-1.750,000 Minus one million seven hundred fifty
thousand

-1,750,000

3.3 General handling

Each block can be used on its own and fulfills a specific task. To fulfill this task, additional information
from other blocks might be required. Blocks are moved using Drag-and-drop. Copying is also possible
using the keyboard shortcuts Strg+C / Strg+V. The Del key removes the block.

Each composition starts and ends with the begin...end frame. This block automatically appears in the
editing area. There are no other restrictions to the block sequence within the composition.

From machine signals to events

Manual - Graphical Composition Page: 14/78

Fig. 7: Selecting functions

Clicking on a function category opens a window with the available functions.
There are functions that act as kind of bracket. They need additional blocks to complete the function.
There are also blocks that need to be connected to other blocks. They contain placeholders for
variables or entries.

There are specific input rules for each type of block for the use of variables or entries. In some cases,
only booleans, strings or numbers are allowed.
A block that does not match the restrictions cannot be connected. It “jumps” away and is highlighted
in gray.
Chapter 17.1 “Parameter overview” provides an overview of all rules and restrictions for the inputs
and outputs of the different types of blocks.

The blocks are read from top to bottom and from left to right.
The input for the Graphical Composition is the content that the application needs to run the
command. The output is the result or the command itself.

From machine signals to events

Manual - Graphical Composition Page: 15/78

Top to bottom

Fig. 8: Example of a top-to-bottom sequence

The begin...end block (1) is the overall frame of each composition. First, the program executes the
block Once per second (2), colored in light blue. It is followed by the SendImpulse block in dark blue
(3). After that, the orange ListNew block (4) is processed. The last block is the red Sleep block (5).

Left to right

Fig. 9: Example of a left-to-right sequence

The lines within the composition are read from left to right, like a book.
It starts with if (1), followed by the green temperature block (2), then the mathematical > symbol
(3), and it ends with the number 30 (4).
Then the program jumps to the next line. This line starts with do, after that the content of the dark
blue block is also read from left to right. This means that the reading sequence is not affected by the
fact that this block consists of two lines.

From machine signals to events

Manual - Graphical Composition Page: 16/78

Fig. 10: Possible actions for a block

Right-clicking a block displays a list of possible actions for a block:
(1) Duplicate block
(2) Add comment
(3) External Inputs/Inline Inputs: Changes the display format
(4) Collapse block

Joined blocks can be collapsed to save space and keep the overall picture clear and readable.
(5) Delete block groups

3.3.1 Layout of the blocks

Each block represents one action. The blocks are composed in a modular way. Matching blocks can
be combined with each other to build the overall structure. This overall structure contains the signal
processing commands. The following sections explain the general layout and specific features of
individual blocks based on graphical examples:

Fig. 11: Connection points

Each block has connection points to other blocks. As with a puzzle, only matching connections can be
combined.

For one, there are blocks with rounded arrows pointing downwards (1). These blocks define basic
conditions and pass on the output to another block. Output is always passed on of there is an open
connection point at the right side of the block. A block group must be completely closed on the right.
On the other hand, there are the classic puzzle elements (2), which are put together from left to
right. They pass on the input of the data.

From machine signals to events

Manual - Graphical Composition Page: 17/78

Fig. 12: Yellow frame

the yellow frame indicates the currently selected block.

Fig. 13: Example of additional extension options

Some blocks have a blue “settings” icon. Clicking this icon opens a window with additional blocks.
These provide further extension options. The blocks can be dragged from the gray area on the left to
the right-hand side below Optional. With the Customer specific settings block, customized
settings can be transferred, if required.

 The optional blocks further down can only be added together with the blocks above (i.e., if the
blocks above have been inserted, too.) In our example, the Customer specific setting block
can only be used after a Reference has been written.

From machine signals to events

Manual - Graphical Composition Page: 18/78

Fig. 14: Drop-down menu

Some blocks have predefined input parameters. Clicking the small triangle on the right displays the
options that are available for block.

3.3.2 Shadow blocks

Fig. 15: Shadow blocks

Shadow blocks act as placeholders for inputs. They indicate that an input is mandatory for the block
to complete its function. A shadow block is always connected to a superordinate block if this block is
selected in the function category window.

A shadow block can be identified by a lighter coloring, and it indicates that this block parameter must
not be empty. Either the value is entered manually (as in Fig. 15 in the yellow and blue fields), or
another block is dragged there.

From machine signals to events

Manual - Graphical Composition Page: 19/78

3.4 Error detection

Fig. 16: Note: invalid block

Fig. 17: Note: block not yet complete

An error in the structure is indicated in two ways.

One way is that the application does not accept the block, as shown in Fig. 16. The block is
highlighted in gray. This applies if function categories or the types of variables do not match. A typical
error would be to insert a Numbers block where a String would be needed.

The other way is that a block is colored in red until all information required by this block has been
added to the structure. Once all required blocks are available, the block returns to its original color.

Only valid blocks are accepted. Clicking the exclamation mark displays the message cause. This makes
error recognition fast and easy.

Variables

Manual - Graphical Composition Page: 20/78

4 Variables

Variables store data. There are three types of variables: Boolean, String or Number. Each type has
specific restrictions regarding the variables’ size and content. Refer to chapter 3.2.2 Function
categories for more information.

Handling variables

Variables must be created first and can then be used in the Graphical Composition.
Clicking the function category Variables opens the list of available blocks. At the very top of the field,
the Create new variable option is available. The name and the type (number, string or boolean) must
be defined for each variable.

Fig. 18: Creating a new variable

Variables can be added as many times as required.

To provide a structured overview, created variables appear under the sub-headings String, Number
and Boolean.

Variables

Manual - Graphical Composition Page: 21/78

Fig. 19: Overview of variable types

Variables can be renamed. To do so, left-click the variable. Select Rename in the drop-down menu.

Fig. 20: Renaming a variable

The drop-down menu also provides the Delete option to delete the variable.

⚠ Each deleted variable is removed completely from the structure and also from the function
category. This may result in an invalid structure.

Variables

Manual - Graphical Composition Page: 22/78

Fig. 21: Deleting a variable

4.1 Get [Variable]

This block is required if you want to use a variable in the structure. For each block, all created
variables of type String, Number and Boolean can be selected via the drop-down menu.
There are no restrictions to the input. The output corresponds to the type of variable.

Example

Fig.22: Example for Get [Variable]

In this case, once per second the number of seconds shall be increased by 1. To do so, the already
created second is used. Once the second variable gets the value 30, an impulse is sent and second is
reset to 0.

Variables

Manual - Graphical Composition Page: 23/78

4.2 Set [Variable] to

Set [Variable] to is a connector. The block is used to assign a value to a variable. Depending on
the type of variable, this might be a string, a number or a boolean value. The variable to be used is
selected via the drop-down menu.
Input and output correspond to the type of variable.

Example:

Fig.23: Example for set [Variable] to

In this case, once per second the number of seconds shall be increased by 1. To implement this
requirement, the set second to block defines that the second variable is to be recalculated. Once
the second variable gets the value 30, an impulse is sent. At the end, the number of seconds is again
reset to 0.

Signals

Manual - Graphical Composition Page: 24/78

5 Signals

In most cases, signals are detected at the assets using sensors, they transfer the information to
EDGE CONNECT.

Handling signals

Unlike variables, the signals used come from the assets themselves. Signals can be configured in step
5 and used later on in the script.

Fig. 24: Adding a new signal

Signals

Manual - Graphical Composition Page: 25/78

5.1 Set [Signal] to

Set [Signal] to is a connector. The block is used to assign a number, string or boolean value to a
signal. The signal to be used is selected via the drop-down menu.
There are no restrictions to the input and output values.

Example

Fig.25: Example for Set [signal] to

At first, Switch1is set to True (value 1). Once per second a repeater is processed. If Switch1is
switched, the production status is sent to Production. If not, status Stoppage is output.

Signals

Manual - Graphical Composition Page: 26/78

5.2 Get Signal

This block is required if you want to use signals in the structure. It reads the signal value. The signal
to be used is selected via the drop-down menu.
There are no restrictions to the input and output values.

Example

Fig. 26: Example for Get Signal

If Switch1 switches to True (value =1), a repeater is called once per second. The repeater checks
whether Switch1 was switched. If yes, the production state is set to Production. If not, status
Stoppage is output.

Signals

Manual - Graphical Composition Page: 27/78

5.3 Get base / scaled value for

The Get base value block converts a signal value into another unit and outputs this value.
The Get scaled Value block outputs the value that is calculated from scaling and offset.

In step 5 of the Configuration Wizard, numerical signals were entered together with the assigned
unit, scaling factor and scaling offset.

The base value indicates that value in the defined SI base unit.
Scaling factor and scaling offset are defined during signal configuration.
With a defined scaling factor and offset of 0, for example, 0 °C is output as 273,15 °Kelvin.
The scaled value is the input value multiplied by the scaled factor and the scaled offset.
There are no restrictions to the input and output values.

Example

Fig. 27: Example for Get base value for

In this example, the temperature value is converted to a different measurement unit and passed on
to a third-party system. Temperature is the Signal name, which is entered in a text block. The
corresponding value is added to the message by the Get base value for Temperature block. This
value must be converted as the SendSignalValue event only accepts strings as input values. See the
following chapters for details.

Events

Manual - Graphical Composition Page: 28/78

6 Events

Events send information packages to third-party systems. The content of these packages is defined in
the Graphical Composition.

6.1 SendImpulse

The SendImpulse block is used whenever a specific impulse is to be sent. The Impulse Count value
defines number of impulses to be sent. Additional blocks (Reference and Customer specific
settings) can optionally be included.
Only numbers can be used as input for Impulse count.
All other input entries must be strings. There are no restrictions to the output.

Example

Fig. 28: Example for SendImpulse

Events

Manual - Graphical Composition Page: 29/78

In this case, once per second the number of seconds shall be increased by 1. Once the number of
seconds reaches 30, the SendImpulse block triggers a message, and the second variable is set to 0.

6.2 SendQuantity

The SendQuantity block sends a defined quantity to third-party systems. The required quantity
entered as number for Quantity. Optionally, Unit (Einheit), Quality details, Reference and
Customer specific settings can be included in the message.
Units must first be defined as variables.
Only numbers can be used as input for Quantity.
All other input entries must be strings. There are no restrictions to the input and output values.

Example

Fig. 29: Example for SendQuantity

Events

Manual - Graphical Composition Page: 30/78

The SendQuanity block shall send a message whenever a light barrier is activated. The message
contains the information, that a quantity of 1 with the unit "pieces” has been produced, and that this
quantity has been qualified (quality detail) as yield.

6.3 SendState

The SendState block sends the asset status as defined in the State field. The status values can be
freely defined here.
Optionally, the list of Status codes, a Reference and Customer specific settings can be
included in the message. The corresponding content has been defined in step 3 of the Configuration
Wizard. Refer to chapter 3.1 for more information.

 In order to send Status codes, a list muss be created.
Refer to chapter 12 for more information.

Only strings are possible as input values. There are no restrictions to the output.

Events

Manual - Graphical Composition Page: 31/78

Example

Fig. 30: Example for SendState

In this example, one of two statuses is transmitted. If the machine is switched on (MachineOn) and
working in (Automatic) mode, the SendState blocks outputs the status Production. If not, the
Stoppage status is output.

6.4 SendSignalValue

The SendSignalValue block is used to send signal values.
The Signal name takes the name of the signal.
The corresponding value is entered in the Value field, the Unit contains the signal unit.
If one of the optional blocks further down is to be used, all other blocks above must be inserted first.
However, these blocks can remain empty, if not required.
Only strings are possible as input values. There are no restrictions to the output.

Events

Manual - Graphical Composition Page: 32/78

Example

Fig. 31: Example for SendSignalValue

In this example, a warning message shall be sent whenever the temperature gets too high.
A signal value is sent if the temperature signal exceeds the value 100.
The transmitted signal contains the signal name (Temp), the value (100), the unit of the value (°C) and
the time when the limit was exceeded CurrentSystemTimestamp). Information for Reference or
Customer specific settings is optional, these may remain empty.

6.5 SendSignalPackage

SendSignalPackage sends lists of signals. The contents originate from previously created lists.
The list of names may be extended by additional signals and matching signal values.
Only strings are possible as input values. There are no restrictions to the output.

 In this case, the sequence must be observed:
The first entry in the list of signals must correspond to the first entry in the list of values.

Events

Manual - Graphical Composition Page: 33/78

Example

Fig. 32: Example for SendSignalPackage

First, two new lists were created: one list of names (NameList) and one list of values (ValueList).
In a Once per hour repeater, the signal called test is added to the NameList. The corresponding
value (test) is written into the ValueList.
In this example, the SendSignalPackage block sends the lists once per hour.
After that, the lists are emptied.

6.6 SendGenericInformation

The SendGenericInformation block sends an event with the current machine (asset) information.
The entries Parameter name and Parameter value.

Events

Manual - Graphical Composition Page: 34/78

Additional Reference and Customer specific settings can optionally be included.
Only strings are possible as input values. There are no restrictions to the output.

Example

Fig. 33: Example for SendGenericInformation

If the camera sensor is activated, the Malfunction status is set to True (1). This indicates a
malfunction.
The SendGenericInformation block sends the error message of the punch as wear.

6.7 SendState [Selection]

The SendState[Selection] block sends an asset status. There are two options: Production and
Stoppage. Optionally, the list of Status codes, a Reference and Customer specific settings

Events

Manual - Graphical Composition Page: 35/78

can be included in the message. The corresponding content has been defined in step 3 of the
Configuration Wizard. Refer to chapter 3.1 for more information.

 In order to send Status codes, a list muss be created.
Refer to chapter 12 for more information.

Input entries for SendState [Selection] must be strings. There are no restrictions to the output.

Example

Fig. 34: Example for SendState [Selection]

At first, the Switch1 signal is set from False (0) to True (1).
Then the repeater starts. If Switch1 is switched, the production status Production is sent. If not, the
Stoppage status is output.

Logical

Manual - Graphical Composition Page: 36/78

7 Logical

7.1 If-do

This block implements the common if-do logic. If represents a condition that must be fulfilled in
order to process the subsequent command (do). If a condition is not fulfilled, else can be used to
trigger a different command.
The else if block is optional. The command is processed whenever the related condition is
regarded as True(1). The dark blue settings icon can be used to select additional parameters.
The input type for if, else if and else is boolean.
There are no restrictions to the input for do.
There are no restrictions to the output.

Example

Fig. 35: Example for the If-do-Block

In this example, the machine status is requested once per second.
If the machine status is not Production the message Something is wrong shall be output. If it is,
the message shall be All is well.

Logical

Manual - Graphical Composition Page: 37/78

7.2 Mathematical comparison: =/≠/</>/≤/≥

Logical connectives like the = link two variables of the Number data type.
The output is always a boolean value, i.e., True (1) or False (0).
The mathematical symbol can be replaced by other symbols.

The following table contains their meanings:

V1 = V2 V1 equals V2

V1 ≠ V2 V1 unequal to V2

V1 > V2 V1 is greater than V2

V1 ≥ V2 V1 is greater than or
equal to V2

V1 < V2 V1 is less than V2

V1 ≤ V2 V1 is less than or
equal to V2

Only numerical values (type Number) can be used as input. The output can only be boolean values.

Logical

Manual - Graphical Composition Page: 38/78

Example

Fig. 36: Example for the = connective

In this example, 30 seconds shall be counted down. After that, the value shall be reset to 0.
Once per second, the second variable is increased by 1.
A check is performed each second to detect how many seconds have already passed. If the number
of seconds equals (=) 30 an impulse is sent. This impulse resets the counter to the original value 0.

7.3 Logical connective: and/or

The and connective is a basic connective (operator). If the states or statements before or after it
apply, the result is True(1). The sequence of input states is not fixed. The output is always a boolean
value, i.e., True (1) or False (0).
In the drop-down menu, the or connective can be selected. For this operator, only one of the
statements must apply in order to regard the result as True (1).
Input and output values can only be boolean values.

Logical

Manual - Graphical Composition Page: 39/78

Example

Fig. 37: Example for the “and” connective

In this example, the SendState block sends the status Production only if the machine is switched on
(MachineOn) and is running in automatic mode (Automatic).
If only one of the two prerequisites applies, status Stoppage is sent.

7.4 Logical connective: equal/not equal

Equal is a basic connective (operator). If two states or statements are equal, the result (output) is
True (1).
The sequence of input states is not fixed. The input is a string value, the output is boolean, i.e.,.True
(1) or False (0).
In the drop-down menu, the opposite (not equal) can be selected.
The difference between the connectives “=” and equal is that equal is used to compare string
values.
Only strings are possible as input values. The output can only be boolean values.

Logical

Manual - Graphical Composition Page: 40/78

Example

Fig. 38: Example for “not equal”

In this example, the machine status is requested once per second.
If the machine status does not match the Production status (not equal), the message Something
is wrong shall be output. If it does, the message shall be All is well.

7.5 Rising/Falling edge

This block indicates that a variable or signal has changed from true (1) to false (O) or vice versa. The
input can only be a boolean value.

Rising edge: At the beginning, the boolean value is false (0). Rising edge checks whether the
value is now true (1). This would mean, that the value has changed from 0 to 1. In this case, the
corresponding command is processed.

Falling edge: At the beginning, the boolean value is true (1). Falling edge checks whether the
value is now false (0). This would mean that the value has changed from 1 to 0. In this case, the
corresponding command is processed.

Logical

Manual - Graphical Composition Page: 41/78

Example

Fig. 39: Example for rising edge

In this example, an OutputSensor is used. Each time a piece is produced, the sensor triggers a signal
change. This means, the boolean value of the signal changes from false (0) to true (1). Consequently,
the Rising edge block is true (1). This triggers the subsequent command and the SendQuantity
block reports one produced piece.

7.6 “Not” statement

The result of a not statement is true if the input value is false.
This means that the original state is the opposite of the output state.
Input and output values can only be boolean values.

Logical

Manual - Graphical Composition Page: 42/78

Example

Fig. 40: Example for a “not” statement

In this case, once a minute a check is performed to detect whether the machine is running for the
first time.
The asset is considered running if the program is not processed (not initialized) and the asset is
not offline (not offline). Therefore, lists are created with current and previous reasons for a status.
The creation of the lists triggers the execution of the program (initialized). This switches the
variable to True (1).
After that, the list of status reasons is deleted.

7.7 True statement

This block is placed at the end and used to define whether the result is True (1) or False(0). To do
so, True or False can be selected from the drop-down menu.
There are no restrictions to the input. The output can only be boolean values.

Logical

Manual - Graphical Composition Page: 43/78

Example

Fig. 41: Example for “true”

At first, Switch1 is activated, which triggers the signal and therefore changes to True (1). After that,
a repeater is called once per second to check whether Switch1 was switched. If yes, the production
status is set to Production. If not, status Stoppage is output.

Repeaters

Manual - Graphical Composition Page: 44/78

8 Repeaters

8.1 Once per

Repeaters are used to repeat an action at regular intervals. The required interval can be select in the
drop-down menu.
Once per

second
minute
hour
day

Example

Fig. 42: Example for once per

In this example, 30 seconds shall be counted down. After that, the value shall be reset to 0.
Once per second, the second variable is increased by 1. A check is performed each second (Once per
second) to detect how many seconds have already passed. If the number of seconds equals (=) 30 an
impulse is sent. The impulse resets the counter for the second variable to the original value 0.

Arithmetic

Manual - Graphical Composition Page: 45/78

9 Arithmetic

9.1 Number field

In this block, a numerical value is inserted to connect it to a task.
Input and output values can only be numbers.

9.2 Mathematical operation

The block can be used for various math operations like addition, subtraction, multiplication, division,
exponentiation or calculating the sine value. Besides numbers, variables can also be included for
calculation.
Input and output values can only be numbers.

Example

Fig. 43: Example for maths operations

A nested calculation indicates the factor. For understanding the calculation method it is important to
follow an ”inside out” calculation rule. This principle is used to place the parenthesis and defines the
calculation order.
In this example, three is added to the second variable first (1). The result is used as denominator of
the fraction (2). This result is then used as exponent to two in the last math operation (3).

Arithmetic

Manual - Graphical Composition Page: 46/78

9.3 ToNumber

The ToNumber block changes the data type from string to a numerical value (number). The string to
be converted must consist of numbers only.
The input must be a numerical value of data type string. The output can only be numbers.

Example

Fig. 44: Example for ToNumber

The SendQuantity block shall report a quantity. However, the input is a string value in our case.
Although it only consists of numbers, the string is not a valid input data type for the SendQuanity
block. Therefore, the ToNumber block is used to convert the string data type into a number. Only this
way the SendQuantity can be processed.

Logging

Manual - Graphical Composition Page: 47/78

10 Logging

10.1 Logging

Raw signals and variables are logged to get the desired values.
Different types of log entries can be selected.

Debug out: Information that can be helpful during issue diagnosis
Info: General log for all types of activities
Warn: Issues or malfunctions that do not prevent processing
Error: Issue that stops/prevents several functions

Only strings are possible as input values. There are no restrictions to the output.

Example

Fig. 45: Example for Debug out

In this example, the Debug out block is used to write the string Machine running to the log file once
per minute.

Text

Manual - Graphical Composition Page: 48/78

11 Text

In Graphical Composition, text is regarded as a string. As with a string, text can consist of letters,
numbers and characters.

11.1 String

Using these blocks, strings can be added by typing them in the quotes.
There are no restrictions to the input. The output can only be string values.

Example

Fig. 46: Example for Length

The set IDNumber to block defines the ID number of an asset with the string “123456789”. After
that, the if-do block checks whether the Id number has more than 8 characters. If yes, a message is
written to the log file. This message is entered in the string. In this case the message is “Number too
long”.

11.2 Append String

As an extension to the simple string, Append String puts several strings together. Strings are added
or deleted by clicking the plus or the minus sign.
Input and output values can only be strings.

Text

Manual - Graphical Composition Page: 49/78

Example

Fig. 47: Example for Append String

This example is about logging the ID number and the switch status. The set log to block makes it
more readable. The Append string block is read from top to bottom. Therefore, first the text "ID
number" is displayed, then the value of the variable IDNumber is added. Then the text “, Schalter:” is
displayed and the signal of the switch Switch1 is added. At the end, the entire string is written to the
log file.

11.3 ToString

ToString is used to convert numbers, or variables representing numbers, into a string.
There are no restrictions to the input. The output can only be string values.

Example

Fig. 48: Example for ToString

The goal is to output the number of minutes. Once per minute the variable minutes is increased by
one. The Debug out block is then used to write the new value to the log file. However, Debug out
can only have strings as input values. Therefore, ToString converts the minutes variable into a text.

Text

Manual - Graphical Composition Page: 50/78

11.4 Length

Length counts the number of characters in a string. The desired string is entered in the quotation
marks. It is also possible to attach a variable. The counted number of string characters is output as
the result. The result is a number. Counting starts with 1.
Only strings are possible as input values. The output can only be numbers.

Example

Fig. 49: Example for Length

As an example, the length of the order number is to be counted to make sure it does not exceed a
defined threshold of eight characters.
If the IDNummer is more than 8 characters long (Length > 8), the Debug out block should write the
message “Number too long” to the log file.

11.5 SplitString

In the SplitString block, a value from a self-defined selection of categories can be output. Input
string is used to define the different categories.
They are separated by a predefined character. This character is defined under Seperator, typically a
comma or an underscore is used as separator.
The index indicates which of the Input string entries is to be selected. Only one value can be
output. The Input strings are counted from left to right. Counting starts with 0.

Text

Manual - Graphical Composition Page: 51/78

Only strings can be used as input and output for Input string and Separator.
For Index, input and output values can only be numbers.

Example

Fig. 50: Example for SplitString

In this example, the machine name should be output. It starts with the text “Hello from machine:”.
The possible categories are listed under Input string and are separated by commas (Separator).
The Index is specified with 0. As a consequence, the MachineName is output. If the index were “2”,
the type (“Type”) would be output.

11.6 FromAscii

The FromAscii block refers to a specified table of values with instructions and characters. The block
accesses a value from this table. The number indicates which value of the ASCII table is to be
selected.
Only numbers can be used as input. The output can only be string values.

 The ASCII table can be found in chapter 17.2 Ascii table, page 77.

Example

Fig. 51: Example for FromAscii

In this example, the text "Hello from machine:" shall be output followed by a paragraph mark and the
text "Forcam".

Text

Manual - Graphical Composition Page: 52/78

The Append String block lists strings one after another. After the first text string "Hello from
machine:" is inserted, the block FromAscii reads and processes the tenth command from the ASCII
table. This is LF for line feed (new line). Then a second FromAscii block fetches command 13 from
the ASCII table. This is CR, i.e., carriage return (same as pressing the Enter key). This places the cursor
at the beginning of a line.
The result looks like this:

Hello from machine:
Forcam

11.7 Substring

The substring block outputs only a part of a string. The entire string entered under Input string.
Start index and End index are entered below as numbers. As typical for indices handling,
characters are counted starting from 0. The End Index is excluded.
Input and output for Input string are strings.
Only numbers are possible as input for Start index and End index. The output can only be string
values.

Text

Manual - Graphical Composition Page: 53/78

Example

Fig. 52: Example for Substring

In this example, the location of the machine shall be output.
The Append String block first sets the text "Hello from machine:". Input string provides a list of
asset properties. Start index specifies that the output starts at character 12. End index indicates
that the output ends and includes character 19.
Because counting starts with 0 from the left, the Location property is output.

Lists

Manual - Graphical Composition Page: 54/78

12 Lists

 A list must be created first.
Only then more blocks are available for use with the list.

12.1 ListNew

The ListNew block creates a new list. The name of the list can be entered in the first field. The type
of list input (string, number or boolean values) is selected from the drop-down menu.
Restrictions for the input are made via the selection.

Example

Fig. 53: Example for ListNew

Lists

Manual - Graphical Composition Page: 55/78

First, the ListNew blocks create two new lists, a list of names and a list of values. The exclamation
marks remind you to empty or delete the list at the end. A repeater adds the signal name test to the
NameList list. The corresponding value is inserted in the ValueList.
Then the SendSignalPackage block sends both lists. The ListClear blocks clear the contents of the
assigned list.

12.2 ListAdd

The ListAdd block adds values to a list. As a prerequisite, the list must already have been created
using the ListNew block. The desired list is selected via the drop-down menu.
The input for the block is always a previously created list. This list is selected from the drop-down
menu. There are no restrictions to the output.

Example

Fig. 54: Example for ListAdd

First, two new lists are created: one list of names and one list of values. One of the ListAdd blocks
adds the signal name test to the NameList once per hour; the other block inserts the corresponding
value into the ValueList. Then the SendSignalPackage block sends both lists. The ListClear
blocks clear the contents of the assigned list.

Lists

Manual - Graphical Composition Page: 56/78

12.3 ListClear

ListClear deletes the contents of a list.
The input for the block is always a previously created list. This list is selected from the drop-down
menu. There are no restrictions to the output.

 It is important to run the ListClear command regularly after creating a new list to keep free
memory.

⚠ ListClear deletes only the contents of a list.
ListDelete completely deletes a previously created list.

Example

Fig. 55: Example for ListClear

First, two new lists are created: one list of names and one list of values. One of the ListAdd blocks
adds the signal name test to the NameList once per hour; the other block inserts the corresponding
value into the ValueList. Then the SendSignalPackage block sends both lists. The ListClear
blocks clear the contents of the assigned list.

Lists

Manual - Graphical Composition Page: 57/78

12.4 ListDelete

The ListDelete block deletes an existing list. The drop-down menu is used to select the list to be
deleted.
The input for the block is always a previously created list. This list is selected from the drop-down
menu. There are no restrictions to the output.

⚠ ListDelete completely deletes a previously created list.
ListClear deletes only the contents of a list.

Example

Fig. 56: Example for ListDelete

In this case, once a minute a check is performed to detect whether the machine is running for the
first time.
The asset is considered running if the program is not processed (not initialized) and the asset is
not offline (not offline). Therefore, lists are created with current and previous reasons for a status.

Lists

Manual - Graphical Composition Page: 58/78

The creation of the lists triggers the execution of the program (initialized). This switches the
variable to True (1).
The list with status reasons is deleted by the ListDelete block.

12.5 GetList

The GetList block inserts a list into the structure. The (already created) list is selected in the drop-
down menu.
The input for the block is always a previously created list. This list is selected from the drop-down
menu. There are no restrictions to the output.

Example

Fig. 57: Example for GetList

In this example, two lists of temperature values shall be created, filled with values, sent and, at the
end, emptied again.
After the lists are created and the temperature values inserted once an hour, they are sent with using
the SendSignalPackage block. The signal name and the corresponding signal values are taken from
the name list and the value list.

Date and time

Manual - Graphical Composition Page: 59/78

13 Date and time

This function category contains all actions related to time or date settings. UTC time is used
throughout the category.
Since there are different abbreviations of time units, Table 2 lists the abbreviations used in the
Graphical Composition.

Table 2: Time units used in Graphical Composition

Letter Date or time Example

G Calendar system era AD

Y Year 2018 (yyy), 18 (yy)

M Month of the year
July (MMMM), Jul (MMM), 07
(MM)

w Week of the year 16

W Week of a month 3

D Day in a year 266

d Day in a month 4

F Week in a month 4

E Day of the week Tuesday, Tue

u
Number of the weekday, where 1
stands for Monday, 2 for Tuesday,
etc

2

a AM or PM AM

h
Hour of the day with am/pm
(1-12)

12

H Hour of the day (0-23) 12

k Hour of the day (1-24) 23

K
Hour of the day with am/pm
(0-11)

2

m Minute per hour 59

s Second per minute 35

S Millisecond per minute 978

z Time zone GMT-08:00

Z
Time zone offset in hours (RFC
pattern)

-0800

Date and time

Manual - Graphical Composition Page: 60/78

X Time zone offset in ISO format -08;-08:00

E, dd MMM yyyy
HH:mm:ss

Example Tue, 02 Jan 2023 11:22:35

13.1 FormatTime

The FormatTime block creates the desired time unit of the current time/a date based on the current
time stamp.
The format specifies the unit of the Offset, e.g., dd.MM.yyyy or MM.dd.yyyy.
The current time is indicated as an Offset of 0 (zero).
The Offset unit determines the counting unit. Possible counting units are milliseconds, seconds,
minutes, hours, days, months or years. For example, the result of an Offset of 10 and milliseconds
(ms) as the unit would be the current time plus 10 milliseconds.

ⓣ Abs is used to convert Unix time stamps (e.g., time stamps that are received directly from the
asset). In this case, the reference time (offset = 0) for conversion is not the current time but
January 1st, 1970, 00:00 o’clock. If Abs is selected, the offset value is therefore the time
difference (in ms) to this (reference) date. This value is converted to the desired format.

The input for Format is a string value. The output can only be string values.
The input for Offset is a number. The output can only be string values.
The input for Offset unit is a drop-down menu. The output can only be string values.

Date and time

Manual - Graphical Composition Page: 61/78

Example

Fig. 58: Graphical example for FormatTime

In this example, a time stamp shall be to be recorded for each stoppage.
If the status is one (1), the SendState block shall send the status Stoppage. At the same time, the
following string shall be written to the timestamp variable: First the date in the order
day.month.year, then the text string T for time, then the time in the order hour:minute:second.

13.2 AtTime Do

The AtTime Do block executes a specific action at a defined time.
The time is specified in the following format: HH : mm: ss. The number range of the hours is from 0
to 23, that of minutes and seconds from 0 to 59.
Only numbers can be used as input.

Date and time

Manual - Graphical Composition Page: 62/78

Example

Fig. 59: Example for AtTime Do

This example shows, a status shall always be sent at exactly the same time. To do so, the ListNew
block is used to create a StatusCode list. This list contains strings. In the AtTime Do block, the time
22:0:0 is defined. At this time, the SendState action will be executed.
The list is then cleared again.

13.3 Sleep

The Sleep block waits for a certain period of time. The numeric value indicates the period (in
milliseconds) for which there shall be no action performed. After that, the next block is executed.
This is especially helpful for actions that take longer to execute. This way it will not be “overtaken” by
subsequent tasks.
Only numbers can be used as input. There are no restrictions to the output.

Date and time

Manual - Graphical Composition Page: 63/78

Example

Fig. 60: Example for Sleep

In this example, Sleep is used as a time buffer. Without a rest period of 20 millisecond, sending a
pulse (SendImpulse) would be faster than calling the endpoint on a server. This would trigger an
error.

13.4 ConvertToTimeStamp

The ConvertToTimeStamp block outputs a time stamp. Date contains the date to be converted, the
Format string below defines the format of this date. The output is a unix value, i.e., the time in
milliseconds after 01/01/1970 at 0:00.
Input and output values can only be strings.

Example

Fig. 61: Example for ConvertToTimeStamp

In this example, two different points in time shall be compared.

Date and time

Manual - Graphical Composition Page: 64/78

If the difference between the received time stamp (ConvertToTimeStamp) and the current time
(CurrentSystemTimestamp) is more than 60,000 ms (i.e., one hour), a message is sent using the
SendGernericInformation block. This message contains the information that the received time
stamp is outdated.

13.5 CurrentSystemTimestamp

The CurrentSystemTimestamp block always enters the current Unix time. It indicates how many
seconds have passed since 01.01.1970.
There are no restrictions to the input. The output can only be string values.

Example

Fig. 62: Example for CurrentSystemTimestamp

In this example, two different points in time shall be compared.
If the difference between the received time stamp (ConvertToTimeStamp) and the current time
(CurrentSystemTimestamp) is more than 60,000 ms (i.e., one hour), a message is sent using the
SendGernericInformation block. This message contains the information that the received time
stamp is outdated.

Misc

Manual - Graphical Composition Page: 65/78

14 Misc

Misc means miscellaneous. This chapter summarizes important blocks with various functions.

14.1 HttpPost

Block HttpPost block sends a message to a third-party system. The Internet address (destination) is
entered in Url. The payload refers to the actual data to be transmitted with the message.
We recommend to use the notation with two primes (superscript quotation marks, e.g., “k”).
Inputs are strings. There are no restrictions to the output.

Example

Fig. 63: Example for HttpPost

In this example, a server communication endpoint shall be called. The url and payload to be used
for the call are entered.
The program then waits for 20 ms (sleep block). This provides the time to call the page. Then the
SendImpulse block sends the value 1.

Misc

Manual - Graphical Composition Page: 66/78

14.2 Get [specific] Data

The Get [specific] Data block outputs specific information. Predefined data includes
Description, Manufacturer, Model Number, Serial Number, Inventory Number and Location.
In the Configuration Wizard, parameters have already been determined in step 2 and step 3. Refer to
chapter 3.1 for more information.
These parameters are automatically added to the drop-down menu.
The input is selected from the drop-down menu. The output can only be string values.

Example

Fig. 64: Example for Get [specific] Data

If the temperature is higher than 50°C, the SendSignalValue block transmits “ Temperature” as the
signal name together with the related temperature value (Value).
An entry is then made in the log file. The entry contains the number of the asset (Get [Model
Number] Data), the text "'s temperature is" and the current value of the “temperature” variable.

Misc

Manual - Graphical Composition Page: 67/78

14.3 GetMachineStatus

GetMachineStatus outputs the current machine status.
There are no restrictions to the input. The output can only be string values.

Example

Fig. 65: Example for GetMachineStatus

In the example, GetMachineStatus is used to query the machine status. If this is not equal to the
status Production, the entry Something is wrong is written to the log file via (Debug out). If not,
the message All is well is written to the log.

14.4 Offline

If a system or machine is not in operation, the status query Offline can be used.
There are no restrictions to the input. The output can only be boolean values.

Misc

Manual - Graphical Composition Page: 68/78

Example

Fig. 66: Example for Offline

In the example, the program checks once per minute for the following status:

‒ The program has not just been initialized (not initialized)
and

‒ the asset is not offline (not Offline)

If this status applies, the asset is running. In this case, lists are created with the current and with
previous reasons for a status. Afterwards, True is used to confirm that the program has just been
started (initialized). This prevents the program from processing the upper part of the list again.
The ListDelete block then deletes the list of status codes.

14.5 IpAddress

The IPAdress block noutputs the IP address of an asset. The IP address is an individual address that
identifies a device on the Internet or within a local network.
There are no restrictions to the input. The output can only be string values.

Misc

Manual - Graphical Composition Page: 69/78

Example

Fig. 67: Example for IpAddress

If the temperature is greater than 30, the SendState block sends the asset status Stoppage. In
addition, the IP address (IPAdress) is written to the log file.

14.6 HostName

HostName enters the name of the host of an asset.
A host is a computer and the operating system running on it, that is part of a network and makes its
services available to other network stations.
There are no restrictions to the input. The output can only be string values.

Example

Fig. 68: Example for HostName

In this example, a new list (ListNew) is created. All HostName values are added to this list using the
ListAdd block. At 12 o'clock, this list is written to the log file and the list is emptied afterwards.

Business Parameters

Manual - Graphical Composition Page: 70/78

15 Business Parameters

15.1 SetParameter

The SetParameter block specifies a new parameter and assigns a value to it. Name and the value of
this parameter are entered in a string.
Parameters have also been defined in step 2 and 3 of the Configuration Wizard already. Refer to
chapter 3.1 for more information.
If an already defined parameter is to be used, the GetParameter block is used (see chapter 15.2).
Only strings are possible as input values. There are no restrictions to the output.

Example

Fig. 69: Example for SetParameter

In this example, once a second a check is performed to determine whether the interval equals 100. If
this is the case, an impulse is sent. After that, the Parameter Name “Interval” is reset to 0
(Paramenter Value) using the SetParameter block. Otherwise, the program continues to increment
the interval by 1.

Business Parameters

Manual - Graphical Composition Page: 71/78

15.2 GetParameter

The GetParameter block pulls the value of a parameter.
Input and output values can only be strings.

Example

Fig. 70: Example for GetParameter

In this example, the machine status is requested once per second. This is done using the
GetParameter block. The name of the parameter (Parameter name) is Machine Status.
If this name does not equal the status Production, the entry Something is wrong shall be written
to the log file using the Debug out block. In any other case, the message All is well is written to
the log (Debug out).

15.3 DeleteParameter

The DeleteParameter block resets the parameter value in the database to 0.
Only strings are possible as input values. There are no restrictions to the output.

Business Parameters

Manual - Graphical Composition Page: 72/78

Example

Fig. 71: Example for DeleteParameter

If the signal I1 is equal to (=) 1, the statement of the mathematical comparison = True (1). In this
case, the DeleteParameter block resets the Parameter name COUNTER to 0.

15.4 DeleteAllParameter

The DeleteAllParameter block deletes all parameters. It is used in the same way as the
DeleteParameter block.
There are no restrictions to the input and output values.

⚠ All parameters already used will also be reset to zero.

Glossary

Manual - Graphical Composition Page: 73/78

16 Glossary

Abbreviations and terms used Description

Bit The smallest memory unit in a computer: 0 or 1

ERP
Enterprise Resource Planning (a software solution for resource
planning within companies)

Hexadecimal number
A number system that consists of 16 possible digit symbols and is
used to facilitate the readability of large numbers or long bit
sequences, e.g., in the ASCII table

IoT Internet of Things

MES Manufacturing Execution System

SFT Shopfloor Terminal

UTC Coordinated Universal Time

°C Degree Celsius

Annex

Manual - Graphical Composition Page: 74/78

17 Annex

17.1 Parameter overview

Blocks Other Input Output

Variables

Get [Variable] N/A Depends on the selection of
String, Number or Boolean

Set [Variable] to Depends on the selection
of String, Number or
Boolean

N/A

Signals

Set [Signal] to N/A N/A

Get Signal N/A N/A

Get base / scaled value for N/A Number

Events

SendImpulse
Impulse count
Reference
Customer specific settings

Optional
Optional

Number
String
String

N/A
N/A
N/A

SendQuantity
Quantity
Unit
Quality details
Reference
Customer specific settings

Optional
Optional
Optional
Optional

Number
String
String
String
String

N/A
N/A
N/A
N/A
N/A

SendState
State
Status codes
Reference
Customer specific settings

Optional
Optional
Optional

String
String
String
String

N/A
N/A
N/A
N/A

SendSignalValue
Signal name
Value
Unit
Reference
Customer specific settings
Timestamp

Optional
Optional
Optional
Optional

String
String
String
String
String
String

N/A
N/A
N/A
N/A
N/A
N/A

SendSignalPackage
Signal name
Value
Unit
Reference
Customer specific settings

Optional
Optional
Optional

String
String
String
String
String
String

N/A
N/A
N/A
N/A
N/A
N/A

SendGenericInformation
Parameter name
Parameter value
Reference

Optional

String
String
String

N/A
N/A
N/A

Annex

Manual - Graphical Composition Page: 75/78

Customer specific settings Optional String N/A

SendState
Status codes
Reference
Customer specific settings

Optional
Optional
Optional

String
String
String

N/A
N/A
N/A

Logical

If-do
If
Else if
Else
Do

Optional
Optional

Boolean
Boolean
Boolean
Any

N/A
N/A
N/A
N/A

Mathematical comparison
=/≠/</>/≤/

 Number Boolean

Logical connective AND/OR Boolean Boolean

Logical connective
equal/not equal

 String Boolean

Rising/Falling edge Boolean Boolean

“NOT” statement Boolean Boolean

Truth statement N/A Boolean

Repeaters

Once per Drop-down menu N/A

Arithmetic

Number field Number Number

Math operation +/-
/*/:/sin/cos/tan/sqrt

 Number Number

ToNumber N/A Number

Logging

Logging String N/A

Text

String N/A String

Append String String String

ToString N/A String

Length String Number

SplitString
Input string
Separator
Index

String
String
Number

String
String
Number

FromAscii Number String

Substring
Input string
Start index
End index

Optional

String
Number
Number

String
N/A
N/A
N/A

Lists

ListNew String Drop-down menu

ListAdd String N/A

ListClear Drop-down menu N/A

ListDelete Drop-down menu N/A

GetList N/A String

Annex

Manual - Graphical Composition Page: 76/78

Date and time

FormatTime
Format
Offset
Offset unit

String
Number
Drop-down menu

String
String
String
String

AtTime Do Number N/A

Sleep Number N/A

ConvertToTimeStamp
Date
Format

String
String

Long
String
String

CurrentSystemTimestamp N/A Long

Misc

HttpPost
Url
Payload

String
String

N/A
N/A

Get [specific] Data Drop-down menu String

GetMachineStatus N/A String

Offline N/A Boolean

IpAddress N/A String

Host N/A String

Business Parameters

SetParameter
Paramter name
Parameter value

String
String

N/A
N/A

GetParameter String String

DeleteParameter String N/A

DeleteAllParameter N/A N/A

Annex

Manual - Graphical Composition Page: 77/78

17.2 Ascii table

Dec Char Description

0 NUL No input

1 SOH
Start of heading

Beginning of the
header

2 STX
Start of Text

Beginning of a text part

3 ETX
End of text

End of a text part

4 EOT
End of

transmission

Completion of a
transmission

5 ENQ
Enquiry

A request for a
response from the
receiving station

6 ACK
Acknowledge

Confirmation

7 BEL
Bell

Generates an audible
signal

8 BS
Backspace

Moves the cursor one
position to the left and
removes the character
at this position

9 TAB
Horizontal tab

Tabulator for horizontal
indentation of the next
text character

10 LF
Line feed

Line break

11 VT
Vertical tab

Tabulator for horizontal
indentation of the next
text character

12 FF
Form feed

Page jump

13 CR
Carriage return

Positions the cursor at
the beginning of a line

14 Shift out Moves the cursor out

15 SI
Shift in

Moves the cursor inside

16 DLE
Data link escape

Shift character

17 DC1
Device control 1

Device-specific function
-
often used as XON

(continue transmission)
18 DC2

Device control 2
Device-specific function

19 DC3
Device control 3

Device-specific function
-
often used as XOFF

(pause transmission)
20 DC4

Device control 4
Device-specific function

Dec Char Description

21 NAC
Negative

acknowledge

Negative confirmation

22 SYN
Synchronous idle

In synchronous data
transmissions, enables
synchronization even in
the absence of signals
to be transmitted

23 ETB
End of trans.

block

Indicates the end of a
data block

24 CAN
Cancel

Cancel

25 EM
End of medium

Indicates the end of a
medium.

26 SUB
Substitute

Replace

27 ESC
Escape

Cancels an activity

28 FS
File separator

Separation of main
groups

29 GS
Group separator

Group separation

30 RS
Record separator

Subgroup separation

31 US
Unit separator

Separation of parts of a
group

32 Space Blank character

33 !

34 ″

35 #

36 $

37 %

38 &

39 ‛

40 (

41)

42 *

43 +

44 ,

45 -

46 .

47 /

48 0

49 1

50 2

51 3

52 4

53 5

54 6

Annex

Manual - Graphical Composition Page: 78/78

Dec Char Description

55 7

56 8

57 9

58 :

59 ;

60 <

61 =

62 >

63 ?

64 @

65 A

66 b

67 C

68 D

69 E

70 F

71 G

72 H

73 I

74 J

75 K

76 L

77 M

78 N

79 O

80 P

81 Q

82 R

83 S

84 T

85 U

86 V

87 W

88 X

89 Y

90 Z

91 [

92 \

93]

94 ^

95 _

96 `

97 a

98 b

99 c

100 d

101 e

102 f

103 g

104 h

105 i

106 j

107 k

Dec Char Description

108 l

109 m

110 n

111 o

112 p

113 q

114 r

115 s

116 t

117 u

118 v

119 w

120 x

121 y

122 z

123 {

124 |

125 }

126 ⁓

127 DEL
Delete

Delete the last
character

	1 About this document
	1.1 Target group

	2 Concept
	2.1 FORCE EDGE CONNECT & Graphical Composition
	2.2 Customer benefits of the Graphical Composition

	3 From machine signals to events
	3.1 Procedure of signal interpretation
	3.2 Important basic information
	3.2.1 General explanation of the user interface
	3.2.2 Function categories
	3.2.3 Notation of numbers

	3.3 General handling
	3.3.1 Layout of the blocks
	3.3.2 Shadow blocks

	3.4 Error detection

	4 Variables
	4.1 Get [Variable]
	4.2 Set [Variable] to

	5 Signals
	5.1 Set [Signal] to
	5.2 Get Signal
	5.3 Get base / scaled value for

	6 Events
	6.1 SendImpulse
	6.2 SendQuantity
	6.3 SendState
	6.4 SendSignalValue
	6.5 SendSignalPackage
	6.6 SendGenericInformation
	6.7 SendState [Selection]

	7 Logical
	7.1 If-do
	7.2 Mathematical comparison: =/≠/</>/≤/≥
	7.3 Logical connective: and/or
	7.4 Logical connective: equal/not equal
	7.5 Rising/Falling edge
	7.6 “Not” statement
	7.7 True statement

	8 Repeaters
	8.1 Once per

	9 Arithmetic
	9.1 Number field
	9.2 Mathematical operation
	9.3 ToNumber

	10 Logging
	10.1 Logging

	11 Text
	11.1 String
	11.2 Append String
	11.3 ToString
	11.4 Length
	11.5 SplitString
	11.6 FromAscii
	11.7 Substring

	12 Lists
	12.1 ListNew
	12.2 ListAdd
	12.3 ListClear
	12.4 ListDelete
	12.5 GetList

	13 Date and time
	13.1 FormatTime
	13.2 AtTime Do
	13.3 Sleep
	13.4 ConvertToTimeStamp
	13.5 CurrentSystemTimestamp

	14 Misc
	14.1 HttpPost
	14.2 Get [specific] Data
	14.3 GetMachineStatus
	14.4 Offline
	14.5 IpAddress
	14.6 HostName

	15 Business Parameters
	15.1 SetParameter
	15.2 GetParameter
	15.3 DeleteParameter
	15.4 DeleteAllParameter

	16 Glossary
	17 Annex
	17.1 Parameter overview
	17.2 Ascii table

